hpa是什么意思| 爱吃酸的人是什么体质| 万象更新什么意思| 梦见杀人什么意思| 脑供血不足吃什么食物| 积食吃什么食物帮助消化| sp是什么| 什么是矢量| 做激光近视眼手术有什么危害| 孕妇吃猕猴桃对胎儿有什么好处| 11.16是什么星座| 男人吃韭菜有什么好处| 德国为什么发动二战| 四不放过是什么| 6月13日是什么日子| 621什么星座| 五谷有什么| 肿瘤患者吃什么药可以抑制肿瘤| 面条是什么做的| 皮肤过敏有什么妙招| 最好的洗发水是什么牌子| 身经百战是什么意思| 五行木生什么| 今天农历什么日子| 色调是什么意思| 粘土是什么土| 坐飞机要什么证件| 处女座后面是什么星座| 屁眼火辣辣的疼是什么原因| 为什么拉绿色的屎| 全国政协常委什么级别| 吃杏仁有什么好处| 包馄饨用猪肉什么部位| 柠檬加蜂蜜泡水喝有什么功效| 优甲乐是治什么病的| 张柏芝什么星座| 粤菜是什么口味| 为什么会喜欢一个人| ph值高是什么原因| 生物工程是什么专业| 临床药学是干什么的| 大拇指抖动是什么原因引起的| 精神出轨什么意思| 胡萝卜和什么不能一起吃| 桃子又什么又什么| 监视是什么意思| 一只眼皮肿是什么原因| 山药长什么样| 什么是放疗治疗| 网剧是什么意思| 染发膏用什么能洗掉| 长脸适合什么短头发| 一见什么| 屌丝男是什么意思| 搀扶是什么意思| 血清检查能测出什么| 耳蜗是什么| 阑尾炎是什么引起的| 程门立雪什么意思| 氟化钠是什么| 巨蟹座和什么星座最配| 什么叫宫腔粘连| 手发胀是什么原因| 珙桐是什么植物| 贫血的人吃什么好| 什么样的人长寿| pes是什么材料| cdp是什么| 桫椤是什么植物| 梦到明星是什么意思| 红萝卜什么时候种| 迂回是什么意思| 南屏晚钟什么意思| 内分泌科看什么| 12月16是什么星座| 软科是什么意思| 甘露丸是什么| 上感是什么意思| 宫颈锥切后需要注意什么| 乳房痒是什么原因| 什么是超声波| 清清什么| 腐女什么意思| 梁字五行属什么| 这个季节有什么水果| 地铁什么时候停运| 什么东西补血| 什么叫脑白质病变| 鸭子喜欢吃什么| u型枕有什么作用| 头晕目眩是什么意思| 脱节是什么意思| 油膜是什么| 赤诚相见是什么意思| absolue是兰蔻的什么产品| 老人家脚肿是什么原因引起的| 标准偏差是什么意思| 淋巴结什么原因引起的| 骨蒸潮热是什么意思| 反应迟钝是什么原因造成的| 什么的肩膀| 麝香是什么| 酒量越来越差什么原因| 蒲公英可以和什么一起泡水喝| 八仙桌是什么生肖| 月经期间吃什么最好| 哈欠是什么意思| 赢弱什么意思| 胚胎和囊胚有什么区别| 为国为民是什么生肖| ECG是什么| 心肌劳损是什么意思| 小猫的胡须有什么作用| 亲和力是什么意思| 女性肛裂要抹什么药好| 什么叫主动脉硬化| 为什么要吃叶酸| 遁形是什么意思| 热量是什么| 今年的属相是什么生肖| 为什么叫黄瓜| 女人有腰窝意味着什么| 什么水果对胃好更养胃| 滞气是什么意思| 万人空巷是什么意思| 紫绀是什么症状| 愚痴是什么意思| neighborhood什么意思| 3月4号是什么星座| 酚氨咖敏片的别名叫什么| 做梦梦到蛆是什么意思| 幽门螺杆菌什么药最好| 飞刃是什么意思| 嗜的意思是什么| 55年出生属什么| pta是什么意思| 月底是什么时候| 头顶一阵一阵疼是什么原因| 体毛旺盛是什么原因| 痛风吃什么蔬菜好| 肠炎用什么药好| 嗓子疼喝什么茶最有效| eb病毒igg抗体阳性是什么意思| 晚上口渴是什么原因引起的| 蜈蚣泡酒有什么功效| 呕吐发烧吃什么药| 鸡精吃多了有什么危害| 中气不足是什么意思| 骨化性肌炎是什么病| 什么是良心| 白色糠疹用什么药膏| 公鸡为什么会打鸣| 七月出生的是什么星座| 粽子的叶子是什么叶| 奶粉水解什么意思| 嘴臭是什么原因| 老二是什么意思| 饭前饭后吃药有什么区别| 3月4号是什么星座| 尿多尿频是什么原因| 胃火牙疼吃什么药好| 脐带血能治疗什么病| 巨蟹男和什么座最配| 一个车一个罔是什么字| 爬金字塔为什么会死| 白蜡金命五行缺什么| 瓜田李下什么意思| 无什么为什么| 羧甲基纤维素钠是什么| 头疼发烧是什么原因| 负离子有什么作用| s代表什么| 心脏房颤是什么症状| 狸是什么动物| 上海最高的楼叫什么| 飞机杯长什么样| 血精和精囊炎吃什么药| 鹅和什么一起炖最好吃| 衣服36码相当于什么码| 事业编制是什么意思| 什么命的人会丧偶| 为什么会得炎症| 国老是什么中药| 血氨高是什么原因| 风是什么结构| 余事勿取什么意思| 过敏看什么科| 牙结石用什么牙膏最好| 7.20是什么星座| 林五行属什么| 可燃冰属于什么能源| 什么的雨丝| 男性尿路感染吃什么药| 外科医生是做什么的| 扩招是什么意思| rt表示什么意思| 夜间盗汗是什么原因| 什么是公共场所| 霉菌性阴道炎用什么药好| 脚底脱皮用什么药| 侄子是什么关系| 18年是什么婚| 为什么晚上不能晾衣服| 叶酸什么牌子好| 凤凰是什么生肖| 逍遥丸的功效和作用是什么| 慢性鼻炎吃什么药| 吊孝是什么意思| 中心句是什么意思| 送礼送什么水果| 看静脉曲张挂什么科| 梦见煮饭是什么意思| 什么是企业年金| 举不胜举的举是什么意思| 金色葡萄球菌最怕什么| 辞退和开除有什么区别| 掏耳朵咳嗽是什么原因| 朋友圈发女朋友照片配什么文字| h2o是什么意思| 喝茶有什么好处和坏处| 高岗为什么自杀| ki67是什么意思| 后背发热是什么原因| 福寿螺为什么不能吃| 痔疮是什么东西| 押韵什么意思| 射手座与什么星座最配| 减肥吃什么| 上师是什么意思| 肚子两侧疼是什么原因| 褪黑素不能和什么一起吃| 什么食物黄体酮含量高| 肚脐下面疼是什么原因| 大运正官是什么意思| 不过如此是什么意思| 红烧肉放什么调料| 农历六月初七是什么星座| 凌波仙子指的是什么花| 胎脂是什么原因造成的| 双侧腋下见淋巴结什么意思| 包皮与包茎有什么区别| 鼻涕倒流到咽喉老吐痰吃什么药能根治| 腮帮子疼吃什么药| 为什么会梦到自己怀孕| 福星贵人是什么意思| 什么是同房| 天灵盖是什么意思| 糯米粉可以做什么| 等离子是什么| 外阴瘙痒涂什么药膏| 肛裂是什么样子的图片| 脚热是什么原因| 身体乳有什么用| 慢性荨麻疹是什么症状| 均匀是什么意思| 颈椎钙化是什么意思严重么| 大便陶土色是什么颜色| 鼻屎有臭味是什么原因| 愚昧什么意思| 牛油果是什么味道的| 猪蹄炖什么| 什么东东| 迈之灵治什么病| 学业是什么意思| 百度Jump to content

内蒙气温回升无大范围雨雪 天气回暖有利春运返

From Wikipedia, the free encyclopedia
百度     谢瑾作品欣赏。

In cellular biology, active transport is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellular energy to achieve this movement. There are two types of active transport: primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient. This process is in contrast to passive transport, which allows molecules or ions to move down their concentration gradient, from an area of high concentration to an area of low concentration, with energy.

Active transport is essential for various physiological processes, such as nutrient uptake, hormone secretion, and nig impulse transmission. For example, the sodium-potassium pump uses ATP to pump sodium ions out of the cell and potassium ions into the cell, maintaining a concentration gradient essential for cellular function. Active transport is highly selective and regulated, with different transporters specific to different molecules or ions. Dysregulation of active transport can lead to various disorders, including cystic fibrosis, caused by a malfunctioning chloride channel, and diabetes, resulting from defects in glucose transport into cells.

Active cellular transportation (ACT)

[edit]

Unlike passive transport, which uses the kinetic energy and natural entropy of molecules moving down a gradient, active transport uses cellular energy to move them against a gradient, polar repulsion, or other resistance. Active transport is usually associated with accumulating high concentrations of molecules that the cell needs, such as ions, glucose and amino acids. Examples of active transport include the uptake of glucose in the intestines in humans and the uptake of mineral ions into root hair cells of plants.[1]

History

[edit]

In 1848, the German physiologist Emil du Bois-Reymond suggested the possibility of active transport of substances across membranes.[2]

In 1926, Dennis Robert Hoagland investigated the ability of plants to absorb salts against a concentration gradient and discovered the dependence of nutrient absorption and translocation on metabolic energy using innovative model systems under controlled experimental conditions.[3]

Rosenberg (1948) formulated the concept of active transport based on energetic considerations,[4] but later it would be redefined.

In 1997, Jens Christian Skou, a Danish physician[5] received the Nobel Prize in Chemistry for his research regarding the sodium-potassium pump.[5]

One category of cotransporters that is especially prominent in research regarding diabetes treatment[6] is sodium-glucose cotransporters. These transporters were discovered by scientists at the National Health Institute.[7] These scientists had noticed a discrepancy in the absorption of glucose at different points in the kidney tubule of a rat. The gene was then discovered for intestinal glucose transport protein and linked to these membrane sodium glucose cotransport systems. The first of these membrane transport proteins was named SGLT1 followed by the discovery of SGLT2.[7] Robert Krane also played a prominent role in this field.

Background

[edit]

Specialized transmembrane proteins recognize the substance and allow it to move across the membrane when it otherwise would not, either because the phospholipid bilayer of the membrane is impermeable to the substance moved or because the substance is moved against the direction of its concentration gradient.[8] There are two forms of active transport, primary active transport and secondary active transport. In primary active transport, the proteins involved are pumps that normally use chemical energy in the form of ATP. Secondary active transport, however, makes use of potential energy, which is usually derived through exploitation of an electrochemical gradient. The energy created from one ion moving down its electrochemical gradient is used to power the transport of another ion moving against its electrochemical gradient.[9] This involves pore-forming proteins that form channels across the cell membrane. The difference between passive transport and active transport is that the active transport requires energy, and moves substances against their respective concentration gradient, whereas passive transport requires no cellular energy and moves substances in the direction of their respective concentration gradient.[10]

In an antiporter, one substrate is transported in one direction across the membrane while another is cotransported in the opposite direction. In a symporter, two substrates are transported in the same direction across the membrane. Antiport and symport processes are associated with secondary active transport, meaning that one of the two substances is transported against its concentration gradient, utilizing the energy derived from the transport of another ion (mostly Na+, K+ or H+ ions) down its concentration gradient. [citation needed]

If substrate molecules are moving from areas of lower concentration to areas of higher concentration[11] (i.e., in the opposite direction as, or against the concentration gradient), specific transmembrane carrier proteins are required. These proteins have receptors that bind to specific molecules (e.g., glucose) and transport them across the cell membrane. Because energy is required in this process, it is known as 'active' transport. Examples of active transport include the transportation of sodium out of the cell and potassium into the cell by the sodium-potassium pump. Active transport often takes place in the internal lining of the small intestine.

Plants need to absorb mineral salts from the soil or other sources, but these salts exist in very dilute solution. Active transport enables these cells to take up salts from this dilute solution against the direction of the concentration gradient. For example, chloride (Cl?) and nitrate (NO3?) ions exist in the cytosol of plant cells, and need to be transported into the vacuole. While the vacuole has channels for these ions, transportation of them is against the concentration gradient, and thus movement of these ions is driven by hydrogen pumps, or proton pumps.[9]

Primary active transport

[edit]
The action of the sodium-potassium pump is an example of primary active transport.

Primary active transport, also called direct active transport, directly uses metabolic energy to transport molecules across a membrane.[12] Substances that are transported across the cell membrane by primary active transport include metal ions, such as Na+, K+, Mg2+, and Ca2+. These charged particles require ion pumps or ion channels to cross membranes and distribute through the body. [citation needed]

Most of the enzymes that perform this type of transport are transmembrane ATPases. A primary ATPase universal to all animal life is the sodium-potassium pump, which helps to maintain the cell potential. The sodium-potassium pump maintains the membrane potential by moving three Na+ ions out of the cell for every two[13] K+ ions moved into the cell. Other sources of energy for primary active transport are redox energy and photon energy (light). An example of primary active transport using redox energy is the mitochondrial electron transport chain that uses the reduction energy of NADH to move protons across the inner mitochondrial membrane against their concentration gradient. An example of primary active transport using light energy are the proteins involved in photosynthesis that use the energy of photons to create a proton gradient across the thylakoid membrane and also to create reduction power in the form of NADPH. [citation needed]

Model of active transport

[edit]

ATP hydrolysis is used to transport hydrogen ions against the electrochemical gradient (from low to high hydrogen ion concentration). Phosphorylation of the carrier protein and the binding of a hydrogen ion induce a conformational (shape) change that drives the hydrogen ions to transport against the electrochemical gradient. Hydrolysis of the bound phosphate group and release of hydrogen ion then restores the carrier to its original conformation.[14]

Types of primary active transporters

[edit]
  1. P-type ATPase: sodium potassium pump, calcium pump, proton pump
  2. F-ATPase: mitochondrial ATP synthase, chloroplast ATP synthase
  3. V-ATPase: vacuolar ATPase
  4. ABC (ATP binding cassette) transporter: MDR, CFTR, etc.

Adenosine triphosphate-binding cassette transporters (ABC transporters) comprise a large and diverse protein family, often functioning as ATP-driven pumps. Usually, there are several domains involved in the overall transporter protein's structure, including two nucleotide-binding domains that constitute the ATP-binding motif and two hydrophobic transmembrane domains that create the "pore" component. In broad terms, ABC transporters are involved in the import or export of molecules across a cell membrane; yet within the protein family there is an extensive range of function.[15]

In plants, ABC transporters are often found within cell and organelle membranes, such as the mitochondria, chloroplast, and plasma membrane. There is evidence to support that plant ABC transporters play a direct role in pathogen response, phytohormone transport, and detoxification.[15] Furthermore, certain plant ABC transporters may function in actively exporting volatile compounds[16] and antimicrobial metabolites.[17]

In petunia flowers (Petunia hybrida), the ABC transporter PhABCG1 is involved in the active transport of volatile organic compounds. PhABCG1 is expressed in the petals of open flowers. In general, volatile compounds may promote the attraction of seed-dispersal organisms and pollinators, as well as aid in defense, signaling, allelopathy, and protection. To study the protein PhABCG1, transgenic petunia RNA interference lines were created with decreased PhABCG1 expression levels. In these transgenic lines, a decrease in emission of volatile compounds was observed. Thus, PhABCG1 is likely involved in the export of volatile compounds. Subsequent experiments involved incubating control and transgenic lines that expressed PhABCG1 to test for transport activity involving different substrates. Ultimately, PhABCG1 is responsible for the protein-mediated transport of volatile organic compounds, such as benzyl alcohol and methylbenzoate, across the plasma membrane.[16]

Additionally in plants, ABC transporters may be involved in the transport of cellular metabolites. Pleiotropic Drug Resistance ABC transporters are hypothesized to be involved in stress response and export antimicrobial metabolites. One example of this type of ABC transporter is the protein NtPDR1. This unique ABC transporter is found in Nicotiana tabacum BY2 cells and is expressed in the presence of microbial elicitors. NtPDR1 is localized in the root epidermis and aerial trichomes of the plant. Experiments using antibodies specifically targeting NtPDR1 followed by Western blotting allowed for this determination of localization. Furthermore, it is likely that the protein NtPDR1 actively transports out antimicrobial diterpene molecules, which are toxic to the cell at high levels.[17]

Secondary active transport

[edit]

In secondary active transport, also known as cotransport or coupled transport, energy is used to transport molecules across a membrane; however, in contrast to primary active transport, there is no direct coupling of ATP. Instead, it relies upon the electrochemical potential difference created by pumping ions in/out of the cell.[18] Permitting one ion or molecule to move down an electrochemical gradient, but possibly against the concentration gradient where it is more concentrated to that where it is less concentrated, increases entropy and can serve as a source of energy for metabolism (e.g. in ATP synthase). The energy derived from the pumping of protons across a cell membrane is frequently used as the energy source in secondary active transport. In humans, sodium (Na+) is a commonly cotransported ion across the plasma membrane, whose electrochemical gradient is then used to power the active transport of a second ion or molecule against its gradient.[19] In bacteria and small yeast cells, a commonly cotransported ion is hydrogen.[19] Hydrogen pumps are also used to create an electrochemical gradient to carry out processes within cells such as in the electron transport chain, an important function of cellular respiration that happens in the mitochondrion of the cell.[20]

In August 1960, in Prague, Robert K. Crane presented for the first time his discovery of the sodium-glucose cotransport as the mechanism for intestinal glucose absorption.[21] Crane's discovery of cotransport was the first ever proposal of flux coupling in biology.[22][23]

Cotransporters can be classified as symporters and antiporters depending on whether the substances move in the same or opposite directions.

Antiporter

[edit]
Function of symporters and antiporters.

In an antiporter two species of ions or other solutes are pumped in opposite directions across a membrane. One of these species is allowed to flow from high to low concentration, which yields the entropic energy to drive the transport of the other solute from a low concentration region to a high one.

An example is the sodium-calcium exchanger or antiporter, which allows three sodium ions into the cell to transport one calcium out.[24] This antiporter mechanism is important within the membranes of cardiac muscle cells in order to keep the calcium concentration in the cytoplasm low.[9] Many cells also possess calcium ATPases, which can operate at lower intracellular concentrations of calcium and sets the normal or resting concentration of this important second messenger.[25] But the ATPase exports calcium ions more slowly: only 30 per second versus 2000 per second by the exchanger. The exchanger comes into service when the calcium concentration rises steeply or "spikes" and enables rapid recovery.[26] This shows that a single type of ion can be transported by several enzymes, which need not be active all the time (constitutively), but may exist to meet specific, intermittent needs.

Symporter

[edit]

A symporter uses the downhill movement of one solute species from high to low concentration to move another molecule uphill from low concentration to high concentration (against its concentration gradient). Both molecules are transported in the same direction.

An example is the glucose symporter SGLT1, which co-transports one glucose (or galactose) molecule into the cell for every two sodium ions it imports into the cell.[27] This symporter is located in the small intestines,[28] heart,[29] and brain.[30] It is also located in the S3 segment of the proximal tubule in each nephron in the kidneys.[31] Its mechanism is exploited in glucose rehydration therapy[32] This mechanism uses the absorption of sugar through the walls of the intestine to pull water in along with it.[32] Defects in SGLT2 prevent effective reabsorption of glucose, causing familial renal glucosuria.[33]

Bulk transport

[edit]

Endocytosis and exocytosis are both forms of bulk transport that move materials into and out of cells, respectively, via vesicles.[34] In the case of endocytosis, the cellular membrane folds around the desired materials outside the cell.[35] The ingested particle becomes trapped within a pouch, known as a vesicle, inside the cytoplasm. Often enzymes from lysosomes are then used to digest the molecules absorbed by this process. Substances that enter the cell via signal mediated electrolysis include proteins, hormones and growth and stabilization factors.[36] Viruses enter cells through a form of endocytosis that involves their outer membrane fusing with the membrane of the cell. This forces the viral DNA into the host cell.[37]

Biologists distinguish two main types of endocytosis: pinocytosis and phagocytosis.[38]

  • In pinocytosis, cells engulf liquid particles (in humans this process occurs in the small intestine, where cells engulf fat droplets).[39]
  • In phagocytosis, cells engulf solid particles.[40]

Exocytosis involves the removal of substances through the fusion of the outer cell membrane and a vesicle membrane.[41] An example of exocytosis would be the transmission of neurotransmitters across a synapse between brain cells.

See also

[edit]

References

[edit]
  1. ^ "The importance of homeostasis". Science. me. Retrieved 23 April 2013.
  2. ^ Du Bois-Reymond, E. (1848–84). Untersuchungen über thierische Elektricit?t Berlin: Reimer. (Vol. 1, Part 1, 1848; Vol. 1, Part 2, 1849; Vol. 2, Part 1, 1860; Vol. 2, Part 2, 1884).
  3. ^ Hoagland, D R; Hibbard, P L; Davis, A R (1926). "The influence of light, temperature, and other conditions on the ability of Nitella cells to concentrate halogens in the cell sap". J. Gen. Physiol. 10 (1): 121–126. doi:10.1085/jgp.10.1.121. PMC 2140878. PMID 19872303.
  4. ^ Rosenberg, T (1948). "On accumulation and active transport in biological systems. I. Thermodynamic considerations". Acta Chem. Scand. 2: 14–33. doi:10.3891/acta.chem.scand.02-0014.
  5. ^ a b "Jens C. Skou - Biographical". Nobelprize.org. Nobel Media AB 2014. Web. 11 Nov 2017
  6. ^ Inzucchi, Silvio E et al. "SGLT-2 Inhibitors and Cardiovascular Risk: Proposed Pathways and Review of Ongoing Outcome Trials." Diabetes & Vascular Disease Research 12.2 (2015): 90–100. PMC. Web. 11 Nov. 2017
  7. ^ a b Story of Discovery: SGLT2 Inhibitors: Harnessing the Kidneys to Help Treat Diabetes." National Institute of Diabetes and Digestive and Kidney Diseases, U.S. Department of Health and Human Services, www.niddk.nih.gov/news/research-updates/Pages/story-discovery-SGLT2-inhibitors-harnessing-kidneys-help-treat-diabetes.aspx.
  8. ^ Active Transport Process[usurped]. Buzzle.com (2025-08-04). Retrieved on 2025-08-04.
  9. ^ a b c Lodish H, Berk A, Zipursky SL, et al. Molecular Cell Biology. 4th edition. New York: W. H. Freeman; 2000. Section 15.6, Cotransport by Symporters and Antiporters[dead link].
  10. ^ Lodish H, Berk A, Zipursky SL, et al. Molecular Cell Biology. 4th edition. New York: W. H. Freeman; 2000. Chapter 15, Transport across Cell Membranes.
  11. ^ Active Transport Archived August 24, 2011, at the Wayback Machine. Biologycorner.com. Retrieved on 2025-08-04.
  12. ^ Nosek, Thomas M. "Section 7/7ch05/7ch05p11". Essentials of Human Physiology. Archived from the original on 2025-08-04.
  13. ^ Reese, Jane B.; Urry, Lisa A.; Cain, Michael L.; Wasserman, Steven A.; Minorsky, Peter V.; Jackson, Robert B. (2014). Tenth Edition, Campbell's Biology (Tenth ed.). United States: Pearson Education Inc. p. 135. ISBN 978-0-321-77565-8.
  14. ^ Cooper, Geoffrey (2009). The Cell: A Molecular Approach. Washington, DC: ASK PRESS. p. 65. ISBN 9780878933006.
  15. ^ a b Kang, Joohyun; Park, Jiyoung (December 6, 2011). "Plant ABC Transporters". The Arabidopsis Book. 9: e0153. doi:10.1199/tab.0153. PMC 3268509. PMID 22303277.
  16. ^ a b Adebesin, Funmilayo (June 30, 2017). "Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter". Plant Science. 356 (6345): 1386–1388. Bibcode:2017Sci...356.1386A. doi:10.1126/science.aan0826. hdl:11245.1/2a6bd9dd-ea94-4c25-95b8-7b16bea44e92. PMID 28663500. S2CID 206658803.
  17. ^ a b Crouzet, Jerome (April 7, 2013). "NtPDR1, a plasma membrane ABC transporter from Nicotiana tabacum, is involved in diterpene transport". Plant Molecular Biology. 82 (1–2): 181–192. doi:10.1007/s11103-013-0053-0. PMID 23564360. S2CID 12276939 – via SpringerLink.
  18. ^ Nosek, Thomas M. "Section 7/7ch05/7ch05p12". Essentials of Human Physiology. Archived from the original on 2025-08-04.
  19. ^ a b Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. Carrier Proteins and Active Membrane Transport.
  20. ^ Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. Electron-Transport Chains and Their Proton Pumps.
  21. ^ Crane, Robert K.; Miller, D.; Bihler, I. (1961). "The restrictions on possible mechanisms of intestinal transport of sugars". In Kleinzeller, A.; Kotyk, A. (eds.). Membrane Transport and Metabolism. Proceedings of a Symposium held in Prague, August 22–27, 1960. Prague: Czech Academy of Sciences. pp. 439–449.
  22. ^ Wright EM, Turk E (February 2004). "The sodium/glucose cotransport family SLC5". Pflügers Arch. 447 (5): 510–8. doi:10.1007/s00424-003-1063-6. PMID 12748858. S2CID 41985805. Crane in 1961 was the first to formulate the cotransport concept to explain active transport [7]. Specifically, he proposed that the accumulation of glucose in the intestinal epithelium across the brush border membrane was coupled to downhill Na+
    transport cross the brush border. This hypothesis was rapidly tested, refined and extended [to] encompass the active transport of a diverse range of molecules and ions into virtually every cell type.
  23. ^ Boyd CA (March 2008). "Facts, fantasies and fun in epithelial physiology". Exp. Physiol. 93 (3): 303–14 (304). doi:10.1113/expphysiol.2007.037523. PMID 18192340. the insight from this time that remains in all current text books is the notion of Robert Crane published originally as an appendix to a symposium paper published in 1960 (Crane et al. 1960). The key point here was 'flux coupling', the cotransport of sodium and glucose in the apical membrane of the small intestinal epithelial cell. Half a century later this idea has turned into one of the most studied of all transporter proteins (SGLT1), the sodium–glucose cotransporter.
  24. ^ Yu, SP; Choi, DW (June 1997). "Na+-Ca2+ exchange currents in cortical neurons: concomitant forward and reverse operation and effect of glutamate". The European Journal of Neuroscience. 9 (6): 1273–81. doi:10.1111/j.1460-9568.1997.tb01482.x. PMID 9215711. S2CID 23146698.
  25. ^ Strehler, EE; Zacharias, DA (January 2001). "Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps". Physiological Reviews. 81 (1): 21–50. doi:10.1152/physrev.2001.81.1.21. PMID 11152753. S2CID 9062253.
  26. ^ Patterson, M; Sneyd, J; Friel, DD (January 2007). "Depolarization-induced calcium responses in sympathetic neurons: relative contributions from Ca2+ entry, extrusion, ER/mitochondrial Ca2+ uptake and release, and Ca2+ buffering". The Journal of General Physiology. 129 (1): 29–56. doi:10.1085/jgp.200609660. PMC 2151609. PMID 17190902.
  27. ^ Wright, EM; Loo, DD; Panayotova-Heiermann, M; Lostao, MP; Hirayama, BH; Mackenzie, B; Boorer, K; Zampighi, G (November 1994). "'Active' sugar transport in eukaryotes". The Journal of Experimental Biology. 196: 197–212. doi:10.1242/jeb.196.1.197. PMID 7823022.
  28. ^ Dyer, J; Hosie, KB; Shirazi-Beechey, SP (July 1997). "Nutrient regulation of human intestinal sugar transporter (SGLT2) expression". Gut. 41 (1): 56–9. doi:10.1136/gut.41.1.56. PMC 1027228. PMID 9274472.
  29. ^ Zhou, L; Cryan, EV; D'Andrea, MR; Belkowski, S; Conway, BR; Demarest, KT (1 October 2003). "Human cardiomyocytes express high level of Na+/glucose cotransporter 1 (SGLT2)". Journal of Cellular Biochemistry. 90 (2): 339–46. doi:10.1002/jcb.10631. PMID 14505350. S2CID 21908010.
  30. ^ Poppe, R; Karbach, U; Gambaryan, S; Wiesinger, H; Lutzenburg, M; Kraemer, M; Witte, OW; Koepsell, H (July 1997). "Expression of the Na+-D-glucose cotransporter SGLT1 in neurons". Journal of Neurochemistry. 69 (1): 84–94. doi:10.1046/j.1471-4159.1997.69010084.x. PMID 9202297. S2CID 34558770.
  31. ^ Wright EM (2001). "Renal Na+-glucose cotransporters". Am J Physiol Renal Physiol. 280 (1): F10–8. doi:10.1152/ajprenal.2001.280.1.F10. PMID 11133510.
  32. ^ a b Loo, DD; Zeuthen, T; Chandy, G; Wright, EM (12 November 1996). "Cotransport of water by the Na+/glucose cotransporter". Proceedings of the National Academy of Sciences of the United States of America. 93 (23): 13367–70. Bibcode:1996PNAS...9313367L. doi:10.1073/pnas.93.23.13367. PMC 24099. PMID 8917597.
  33. ^ Wright EM, Hirayama BA, Loo DF (2007). "Active sugar transport in health and disease". Journal of Internal Medicine. 261 (1): 32–43. doi:10.1111/j.1365-2796.2006.01746.x. PMID 17222166.
  34. ^ Reece, Jane; Urry, Lisa; Cain, Michael; Wasserman, Steven; Minorsky, Peter; Jackson, Robert (2014). Tenth Addition Campbell Biology (Tenth Addition ed.). United States of America: Pearson Education, Inc. p. 137. ISBN 978-0-321-77565-8.
  35. ^ Transport into the Cell from the Plasma Membrane: Endocytosis – Molecular Biology of the Cell – NCBI Bookshelf. Ncbi.nlm.nih.gov (2025-08-04). Retrieved on 2025-08-04.
  36. ^ Paston, Ira; Willingham, Mark C. (1985). Endocytosis. Springer, Boston, MA. pp 1–44. doi: 10.1007/978-1-4615-6904-6_1. ISBN 9781461569060.
  37. ^ Jahn, Reinhard; Südhof, Thomas C. (1999). "Membrane Fusion and Exocytosis". Annual Review of Biochemistry. 68 (1): 863–911. doi:10.1146/annurev.biochem.68.1.863. ISSN 0066-4154. PMID 10872468.
  38. ^ Cell : Two Major Process in Exchange Of Materials Between Cell And Environment Archived August 11, 2010, at the Wayback Machine. Takdang Aralin (2025-08-04). Retrieved on 2025-08-04.
  39. ^ Pinocytosis: Definition. biology-online.org
  40. ^ Phagocytosis. Courses.washington.edu. Retrieved on 2025-08-04.
  41. ^ Jahn, Reinhard; Südhof, Thomas C. (1999). "Membrane Fusion and Exocytosis". Annual Review of Biochemistry. 68: 863–911. doi:10.1146/annurev.biochem.68.1.863. PMID 10872468.

Notes

[edit]
[edit]
秋葵有什么营养 0206是什么星座 打一个喷嚏代表什么 舌苔发黄是什么原因引起的 rh是什么元素
盆腔磁共振平扫能查出什么 嘴麻是什么原因引起的 毛囊炎用什么洗发水 吃什么可以补胶原蛋白 深海鱼油有什么作用
梦见死人是什么预兆 好饭不怕晚什么意思 一鸣惊人指什么生肖 咖啡过敏的症状是什么 腱鞘炎在什么位置
疱疹在什么情况下传染 感冒是什么原因引起的 什么是呆账 trans什么意思 1978年属什么生肖
绿五行属什么hcv7jop9ns8r.cn 同样的药为什么价格相差很多hcv8jop1ns1r.cn 火龙果不能和什么一起吃520myf.com 虾不能和什么东西一起吃hcv7jop9ns8r.cn 脑动脉硬化吃什么药hcv8jop2ns8r.cn
很困但是睡不着是什么原因hcv8jop1ns3r.cn 18kgp是什么意思hcv8jop5ns8r.cn 什么是虚岁hcv8jop0ns4r.cn 铁观音是属于什么茶hcv8jop4ns9r.cn 当归配什么不上火hcv8jop5ns2r.cn
肿脚是什么原因引起的hcv9jop6ns6r.cn 晚上老是做梦是什么原因wuhaiwuya.com 分泌物呈褐色是什么原因hcv9jop6ns0r.cn 睡觉起来眼睛肿是什么原因bjcbxg.com 插入是什么感觉hcv7jop9ns3r.cn
天天吃玉米有什么好处和坏处hcv8jop9ns7r.cn 疝外科是治什么病的hcv8jop7ns9r.cn pd990是什么金hcv9jop4ns0r.cn 中秋节干什么hcv9jop0ns7r.cn 出汗发粘是什么原因hcv8jop4ns7r.cn
百度