东北和山东有什么区别| 孕妇肚子疼是什么原因| 2月13号是什么星座| 沙棘是什么植物| 举世无双是什么意思| 玉米什么时候传入中国| belle什么意思| 茯苓生长在什么地方| 什么好| 什么叫辟谷| 什么是掌跖脓疱病| 3月份生日是什么星座| 张飞穿针歇后语下一句是什么| 上海市长什么级别| 束脚裤配什么鞋子| 三七粉做面膜有什么功效| 阁下是什么意思| 脸上长扁平疣是什么原因引起的| 立夏节吃什么| 调养是什么意思| 米白色是什么颜色| 亚硝酸钠是什么东西| 香港电话前面加什么| 月亮发红是什么原因| 葛根粉有什么效果| 大拇指指甲凹陷是什么原因| 从容面对是什么意思| 小孩铅过高有什么症状| 什么是公因数| 阴道有褐色分泌物是什么原因| 低压48有什么危险| 什么高什么长| 二郎神叫什么名字| 妈妈的哥哥的老婆叫什么| 木志读什么| 女人胯骨疼是什么原因| 5月19日是什么星座| 霉菌性阴道炎用什么药好| 佩戴沉香有什么好处| 右手指发麻是什么原因| 海松茸是什么东西| pd医学上是什么意思| 血脂低是什么原因| 查验是什么意思| 光明会是什么组织| 妲是什么意思| 矫正视力什么意思| 四月十五日是什么日子| 紫米和黑米有什么区别| 一什么水井| 巧克力和什么不能一起吃| 混油皮是什么特征| 什么是深海鱼| 近水楼台是什么意思| 寡妇年是什么意思| 五行中什么生水| 女人什么时候最容易怀孕| 天牛长什么样子| 龙的三合生肖是什么| 善什么甘什么| 胃疼吃什么药最有效| 男人右眼跳是什么预兆| 肝不好吃什么中成药| 阳虚吃什么中药| 1942年属什么生肖| 负心汉是什么意思| 1026什么星座| 狗狗产后吃什么下奶多| 凤是什么意思| 6月25号是什么星座| 名侦探柯南什么时候完结| 急性牙髓炎吃什么药| 子宫动脉阻力高是什么引起的| 稀奶油是什么奶油| 右枕前位是什么意思| 化疗后白细胞低吃什么食物补得快| bodywash是什么意思| 节哀顺便是什么意思| 天启是什么意思| 客厅用什么灯具好| 网监是干什么的| 细菌性阴道炎是什么原因引起的| 话糙理不糙是什么意思| 肛门瘙痒用什么药最好| 吃什么会回奶| 窦性心动过缓是什么意思| 山东简称是什么| 教是什么生肖| 山青读什么| 阴阳双补用什么药最佳| 农历闰月有什么规律| 什么样的季节| 头部神经痛吃什么药好| 视网膜脱落有什么症状| 盘是什么意思| 2003年属羊的是什么命| 什么是碱| 什么人不能吃玉米| 百毒不侵是什么意思| 天荒地老是什么生肖| 纷乐是什么药| 全自动洗衣机不脱水是什么原因| 装什么病能容易开病假| 腺样体肥大挂什么科| 大材小用是什么生肖| 躺着头晕是什么原因| 凿壁偷光是什么意思| mect是什么意思| 依非韦伦片治什么病的| 什么有力| 宫颈筛查是什么意思| 吐槽是什么意思| 以免是什么意思| 血透是什么意思| 中度脂肪肝吃什么药| 大便遇水就散什么原因| 梦见打死蛇是什么意思| 痔疮什么情况下需要做手术| 喝山楂水有什么好处| 人为什么会低血糖| 尾牙是什么意思| 女人小肚子疼是什么原因| 百香果什么时候吃最好| 甲状腺亢进是什么意思| 秃鹫是什么动物| 马踏飞燕什么意思| 2月1号什么星座| 钧五行属什么| 心电图st段改变什么意思| 今年是什么生肖年| 弱视和近视有什么区别| 今天开什么奖| 9月份是什么星座的| 脂蛋白高吃什么药能降下来| 什么品牌的冰箱好| 单脱是什么意思| 河堤是什么意思| 前庭是什么意思| 古代新疆叫什么| 什么鱼最好养不容易死| 墨染是什么意思| 床上什么虫子夜间咬人| 喝什么茶可以降血脂| 美女什么都没有穿| 九重天是什么意思| 什么野果| 洗涤心灵是什么意思| 男士阴囊湿疹用什么药膏| 9月10日什么星座| 刷牙牙龈出血是什么原因| 2月2日什么星座| 苹果的英文是什么| 什么是塔罗牌| 处女座女生和什么星座男生最配| 蒙古族的那达慕大会是在什么时候| 喉咙干吃什么药| 戴玉对身体有什么好处| 梦见生了个儿子是什么意思| 肚子胀屁多是什么原因| 吃什么东西涨奶最快| 湿气重去医院挂什么科| 无痛人流和普通人流有什么区别| 化疗后白细胞低吃什么补得快| 庄周梦蝶什么意思| 什么叫精神病| 袖珍是什么意思| 伤寒是什么意思| 低级别上皮内瘤变是什么意思| 甲状腺囊实性结节是什么意思| 十一月二十四是什么星座| 声带白斑是什么病| 麦粒肿是什么原因引起的| 牛跟什么生肖相合| 免疫球蛋白是什么| 购置是什么意思| 什么叫2型糖尿病| 有什么好看的三级片| 什么呀| 什么原因引起耳鸣| 玫瑰金是什么颜色| 房水由什么产生| 又什么又什么造句| 结核抗体阳性说明什么| 勃起不坚吃什么药| 双恋是什么意思| 胆囊炎属于什么科| 燃气灶什么品牌好| 什么颜色的衣服显白| 面起子是什么| 神迹是什么意思| 阿拉伯人是什么种人| 矫正视力是指什么| 标间是什么意思| 一个月的小猫吃什么| 足是什么结构| 莴笋不能和什么一起吃| 胃底腺息肉是什么意思| 湿气严重吃什么药好得快| 阳历六月是什么星座| 貔貅长什么样| 光绪帝叫什么名字| 吃什么食物补肾| 心脏缺血吃什么药| 鹅蛋脸适合什么样的发型| r表示什么| 牛男和什么属相最配| pc是什么| 头顶秃了一小块是什么原因怎么办| 认干妈有什么讲究| 夏侯霸为什么投降蜀国| 九宫八卦是什么意思| honey什么意思| 想当演员考什么学校| 芒果跟什么不能一起吃| 口干舌燥吃什么中成药| 回本是什么意思| 前列腺是什么病| 顺钟向转位是什么意思| 带状疱疹能吃什么食物| 水保是什么| 什么是天珠| 生理期为什么会腰疼| 中焦不通用什么中成药| 六月二十三是什么日子| 临幕是什么意思| 耳毛念什么| 享受低保需要什么条件| 什么水果是碱性的| 中国铁塔是干什么的| 阴超可以检查出什么| Mo什么元素| 左耳嗡嗡响吃什么药| 七月份什么星座| 2月3号是什么星座| 卵巢畸胎瘤是什么病| 梦见莲藕是什么意思| 蒸馒头用什么面粉| 清什么什么月| 负罪感是什么意思| 得了子宫肌瘤注意什么| 什么叫阴虱| 小便尿不出来什么原因| 家里出现蟑螂预示什么| 鼻子经常出血是什么原因| 人情味是什么意思| 克苏鲁是什么| 11点半是什么时辰| 牛魔王是什么生肖| 疣是什么原因造成的| 补脾吃什么食物最好| 总打喷嚏是什么原因| 香港代购什么东西好| 脑血栓适合吃什么水果| 为什么一照相脸就歪了| 眼皮肿是什么原因| 打不死的小强什么意思| pd什么意思| 月桂酰两性基乙酸钠是什么| 北海龙王叫什么| 梨的功效与作用是什么| 7月8日是什么星座| 宣府是现在的什么地方| 办健康证要带什么证件| 家里养什么动物吃蟑螂| 百度Jump to content

旅游--广西频道--人民网

From Wikipedia, the free encyclopedia
百度 但评价标准基本以发表论文数量为主,对质量的要求又以所谓发表权威期刊为判断标准。

Ancient Egyptian mathematics is the mathematics that was developed and used in Ancient Egypt c. 3000 to c. 300 BCE, from the Old Kingdom of Egypt until roughly the beginning of Hellenistic Egypt. The ancient Egyptians utilized a numeral system for counting and solving written mathematical problems, often involving multiplication and fractions. Evidence for Egyptian mathematics is limited to a scarce amount of surviving sources written on papyrus. From these texts it is known that ancient Egyptians understood concepts of geometry, such as determining the surface area and volume of three-dimensional shapes useful for architectural engineering, and algebra, such as the false position method and quadratic equations.

Overview

[edit]

Written evidence of the use of mathematics dates back to at least 3200 BC with the ivory labels found in Tomb U-j at Abydos. These labels appear to have been used as tags for grave goods and some are inscribed with numbers.[1] Further evidence of the use of the base 10 number system can be found on the Narmer Macehead which depicts offerings of 400,000 oxen, 1,422,000 goats and 120,000 prisoners.[2] Archaeological evidence has suggested that the Ancient Egyptian counting system had origins in Sub-Saharan Africa.[3] Also, fractal geometry designs which are widespread among Sub-Saharan African cultures are also found in Egyptian architecture and cosmological signs.[4]

The evidence of the use of mathematics in the Old Kingdom (c. 2690–2180 BC) is scarce, but can be deduced from inscriptions on a wall near a mastaba in Meidum which gives guidelines for the slope of the mastaba.[5] The lines in the diagram are spaced at a distance of one cubit and show the use of that unit of measurement.[1]

The earliest true mathematical documents date to the 12th Dynasty (c. 1990–1800 BC). The Moscow Mathematical Papyrus, the Egyptian Mathematical Leather Roll, the Lahun Mathematical Papyri which are a part of the much larger collection of Kahun Papyri and the Berlin Papyrus 6619 all date to this period. The Rhind Mathematical Papyrus which dates to the Second Intermediate Period (c. 1650 BC) is said to be based on an older mathematical text from the 12th dynasty.[6]

The Moscow Mathematical Papyrus and Rhind Mathematical Papyrus are so called mathematical problem texts. They consist of a collection of problems with solutions. These texts may have been written by a teacher or a student engaged in solving typical mathematics problems.[1]

An interesting feature of ancient Egyptian mathematics is the use of unit fractions.[7] The Egyptians used some special notation for fractions such as 1/2, 1/3 and 2/3 and in some texts for 3/4, but other fractions were all written as unit fractions of the form 1/n or sums of such unit fractions. Scribes used tables to help them work with these fractions. The Egyptian Mathematical Leather Roll for instance is a table of unit fractions which are expressed as sums of other unit fractions. The Rhind Mathematical Papyrus and some of the other texts contain 2/n tables. These tables allowed the scribes to rewrite any fraction of the form 1/n as a sum of unit fractions.[1]

During the New Kingdom (c. 1550–1070 BC) mathematical problems are mentioned in the literary Papyrus Anastasi I, and the Papyrus Wilbour from the time of Ramesses III records land measurements. In the workers village of Deir el-Medina several ostraca have been found that record volumes of dirt removed while quarrying the tombs.[1][6]

Sources

[edit]

Current understanding of ancient Egyptian mathematics is impeded by the paucity of available sources. The sources that do exist include the following texts (which are generally dated to the Middle Kingdom and Second Intermediate Period):

From the New Kingdom there are a handful of mathematical texts and inscriptions related to computations:

  • The Papyrus Anastasi I, a literary text written as a (fictional) letter written by a scribe named Hori and addressed to a scribe named Amenemope. A segment of the letter describes several mathematical problems.[6]
  • Ostracon Senmut 153, a text written in hieratic[6]
  • Ostracon Turin 57170, a text written in hieratic[6]
  • Ostraca from Deir el-Medina contain computations. Ostracon IFAO 1206 for instance shows the calculation of volumes, presumably related to the quarrying of a tomb.[6]

According to étienne Gilson, Abraham "taught the Egyptians arythmetic and astronomy".[9]

Numerals

[edit]

Ancient Egyptian texts could be written in either hieroglyphs or in hieratic. In either representation the number system was always given in base 10. The number 1 was depicted by a simple stroke, the number 2 was represented by two strokes, etc. The numbers 10, 100, 1000, 10,000 and 100,000 had their own hieroglyphs. Number 10 is a hobble for cattle, number 100 is represented by a coiled rope, the number 1000 is represented by a lotus flower, the number 10,000 is represented by a finger, the number 100,000 is represented by a frog, and a million was represented by a god with his hands raised in adoration.[8]

Hieroglyphics for Egyptian numerals[2]
1 10 100 1000 10,000 100,000 1,000,000
Z1
V20
V1
M12
D50
I8
C11
Slab stela of Old Kingdom princess Neferetiabet (dated 2590–2565 BC) from her tomb at Giza, painting on limestone, now in the Louvre

Egyptian numerals date back to the Predynastic period. Ivory labels from Abydos record the use of this number system. It is also common to see the numerals in offering scenes to indicate the number of items offered. The king's daughter Neferetiabet is shown with an offering of 1000 oxen, bread, beer, etc.

The Egyptian number system was additive. Large numbers were represented by collections of the glyphs and the value was obtained by simply adding the individual numbers together.

This scene depicts a cattle count (copied by the Egyptologist Lepsius). In the middle register we see 835 horned cattle on the left, right behind them are some 220 animals (cows?) and on the right 2235 goats. In the bottom register we see 760 donkeys on the left and 974 goats on the right.

The Egyptians almost exclusively used fractions of the form 1/n. One notable exception is the fraction 2/3, which is frequently found in the mathematical texts. Very rarely a special glyph was used to denote 3/4. The fraction 1/2 was represented by a glyph that may have depicted a piece of linen folded in two. The fraction 2/3 was represented by the glyph for a mouth with 2 (different sized) strokes. The rest of the fractions were always represented by a mouth super-imposed over a number.[8]

Hieroglyphics for some fractions[8]
1/2 1/3 2/3 1/4 1/5
Aa13
r
Z2
D22
r
Z1 Z1 Z1 Z1
r
Z1 Z1 Z1 Z1 Z1

Notation

[edit]

Steps of calculations were written in sentences in Egyptian languages. (e.g. "Multiply 10 times 100; it becomes 1000.")

In Rhind Papyrus Problem 28, the hieroglyphs

D54andD55

(D54, D55), symbols for feet, were used to mean "to add" and "to subtract." These were presumably shorthands for

G35D54andO1
D21
D54

meaning "to go in" and "to go out."[10][11]

Multiplication and division

[edit]

Egyptian multiplication was done by a repeated doubling of the number to be multiplied (the multiplicand), and choosing which of the doublings to add together (essentially a form of binary arithmetic), a method that links to the Old Kingdom. The multiplicand was written next to figure 1; the multiplicand was then added to itself, and the result written next to the number 2. The process was continued until the doublings gave a number greater than half of the multiplier. Then the doubled numbers (1, 2, etc.) would be repeatedly subtracted from the multiplier to select which of the results of the existing calculations should be added together to create the answer.[2]

As a shortcut for larger numbers, the multiplicand can also be immediately multiplied by 10, 100, 1000, 10000, etc.

For example, Problem 69 on the Rhind Papyrus (RMP) provides the following illustration, as if Hieroglyphic symbols were used (rather than the RMP's actual hieratic script).[8]

Multiplication: 80 × 14
Egyptian calculation Modern calculation
Result Multiplier Result Multiplier
V20 V20 V20 V20
V20 V20 V20 V20
Z1
80 1
V1 V1 V1 V1
V1 V1 V1 V1
V20
800 10
V20 V20 V20
V20 V20 V20
V1
Z1 Z1
160 2
V20
V20
V1 V1
V1
Z1 Z1 Z1 Z1
320 4
V20
V20
V1M12
Z1 Z1 Z1 Z1 V20
1120 14

The denotes the intermediate results that are added together to produce the final answer.

The table above can also be used to divide 1120 by 80. We would solve this problem by finding the quotient (80) as the sum of those multipliers of 80 that add up to 1120. In this example that would yield a quotient of 10 + 4 = 14.[8] A more complicated example of the division algorithm is provided by Problem 66. A total of 3200 ro of fat are to be distributed evenly over 365 days.

Division:
3200 ÷ 365
1 365
2 730
4 1460
8 2920
2/3 ⁠243+1/3
1/10 ⁠36+1/2
1/2190 1/6

First the scribe would double 365 repeatedly until the largest possible multiple of 365 is reached, which is smaller than 3200. In this case 8 times 365 is 2920 and further addition of multiples of 365 would clearly give a value greater than 3200. Next it is noted that 2/3 + 1/10 + 1/2190 times 365 gives us the value of 280 we need. Hence we find that 3200 divided by 365 must equal 8 + 2/3 + 1/10 + 1/2190.[8]

Algebra

[edit]

Egyptian algebra problems appear in both the Rhind mathematical papyrus and the Moscow mathematical papyrus as well as several other sources.[8]

P6a
M35
Aha
in hieroglyphs
Era: New Kingdom
(1550–1069 BC)

Aha problems involve finding unknown quantities (referred to as Aha) if the sum of the quantity and part(s) of it are given. The Rhind Mathematical Papyrus also contains four of these types of problems. Problems 1, 19, and 25 of the Moscow Papyrus are Aha problems. For instance problem 19 asks one to calculate a quantity taken ⁠1+1/2 times and added to 4 to make 10.[8] In other words, in modern mathematical notation we are asked to solve the linear equation:

Solving these Aha problems involves a technique called method of false position. The technique is also called the method of false assumption. The scribe would substitute an initial guess of the answer into the problem. The solution using the false assumption would be proportional to the actual answer, and the scribe would find the answer by using this ratio.[8]

The mathematical writings show that the scribes used (least) common multiples to turn problems with fractions into problems using integers. In this connection red auxiliary numbers are written next to the fractions.[8]

The use of the Horus eye fractions shows some (rudimentary) knowledge of geometrical progression. Knowledge of arithmetic progressions is also evident from the mathematical sources.[8]

Quadratic equations

[edit]

The ancient Egyptians were the first civilization to develop and solve second-degree (quadratic) equations. This information is found in the Berlin Papyrus fragment. Additionally, the Egyptians solve first-degree algebraic equations found in Rhind Mathematical Papyrus.[12]

Geometry

[edit]
Image of Problem 14 from the Moscow Mathematical Papyrus. The problem includes a diagram indicating the dimensions of the truncated pyramid.

There are only a limited number of problems from ancient Egypt that concern geometry. Geometric problems appear in both the Moscow Mathematical Papyrus (MMP) and in the Rhind Mathematical Papyrus (RMP). The examples demonstrate that the Ancient Egyptians knew how to compute areas of several geometric shapes and the volumes of cylinders and pyramids.

  • Area:
    • Triangles: The scribes record problems computing the area of a triangle (RMP and MMP).[8]
    • Rectangles: Problems regarding the area of a rectangular plot of land appear in the RMP and the MMP.[8] A similar problem appears in the Lahun Mathematical Papyri in London.[13][14]
    • Circles: Problem 48 of the RMP compares the area of a circle (approximated by an octagon) and its circumscribing square. This problem's result is used in problem 50, where the scribe finds the area of a round field of diameter 9 khet.[8]
    • Hemisphere: Problem 10 in the MMP finds the area of a hemisphere.[8]
  • Volumes:
    • Cylindrical (cylinder): Several problems compute the volume of cylindrical granaries (RMP 41–43), while problem 60 RMP seems to concern a pillar or a cone instead of a pyramid. It is rather small and steep, with a seked (reciprocal of slope) of four palms (per cubit).[8] In section IV.3 of the Lahun Mathematical Papyri the volume of a granary with a circular base is found using the same procedure as RMP 43.
    • Rectangular (Cuboid): Several problems in the Moscow Mathematical Papyrus (problem 14) and in the Rhind Mathematical Papyrus (numbers 44, 45, 46) compute the volume of a rectangular granary.[13]
    • Truncated pyramid (frustum) Frustum: The volume of a truncated pyramid is computed in MMP 14.[8]

The Seqed

[edit]

Problem 56 of the RMP indicates an understanding of the idea of geometric similarity. This problem discusses the ratio run/rise, also known as the seqed. Such a formula would be needed for building pyramids. In the next problem (Problem 57), the height of a pyramid is calculated from the base length and the seked (Egyptian for the reciprocal of the slope), while problem 58 gives the length of the base and the height and uses these measurements to compute the seqed. In Problem 59 part 1 computes the seqed, while the second part may be a computation to check the answer: If you construct a pyramid with base side 12 [cubits] and with a seqed of 5 palms 1 finger; what is its altitude?[8]

See also

[edit]

References

[edit]
  1. ^ a b c d e Imhausen, Annette (2006). "Ancient Egyptian Mathematics: New Perspectives on Old Sources". The Mathematical Intelligencer. 28 (1): 19–27. doi:10.1007/bf02986998. S2CID 122060653.
  2. ^ a b c Burton, David (2005). The History of Mathematics: An Introduction. McGraw–Hill. ISBN 978-0-07-305189-5.
  3. ^ Eglash, Ron (1999). African fractals : modern computing and indigenous design. New Brunswick, N.J.: Rutgers University Press. pp. 89, 141. ISBN 0813526140.
  4. ^ Eglash, R. (1995). "Fractal Geometry in African Material Culture". Symmetry: Culture and Science. 6–1: 174–177.
  5. ^ Rossi, Corinna (2007). Architecture and Mathematics in Ancient Egypt. Cambridge University Press. ISBN 978-0-521-69053-9.
  6. ^ a b c d e f g Katz V, Imhasen A, Robson E, Dauben JW, Plofker K, Berggren JL (2007). The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook. Princeton University Press. ISBN 978-0-691-11485-9.
  7. ^ Reimer, David (2025-08-14). Count Like an Egyptian: A Hands-on Introduction to Ancient Mathematics. Princeton University Press. ISBN 9781400851416.
  8. ^ a b c d e f g h i j k l m n o p q r s t u v w Clagett, Marshall Ancient Egyptian Science, A Source Book. Volume Three: Ancient Egyptian Mathematics (Memoirs of the American Philosophical Society) American Philosophical Society. 1999 ISBN 978-0-87169-232-0.
  9. ^ Gilson, étienne (February 15, 2019). "From Scotus Eriugena to Saint Bernard". History of Christian Philosophy in the Middle Ages. Washington DC: Catholic University of America Press. p. 265. doi:10.2307/j.ctvdf0jnn. ISBN 9780813231952. JSTOR j.ctvdf0jnn. OCLC 1080547285. S2CID 170577624.
  10. ^ Chace, Arnold Buffum; Bull, Ludlow; Manning, Henry Parker (1929). The Rhind Mathematical Papyrus. Vol. 2. Mathematical Association of America.
  11. ^ Cajori, Florian (1993) [1929]. A History of Mathematical Notations. Dover Publications. pp. pp. 229–230. ISBN 0-486-67766-4.
  12. ^ Moore, Deborah Lela (1994). The African roots of mathematics (2nd ed.). Detroit, Mich.: Professional Educational Services. ISBN 1884123007.
  13. ^ a b R.C. Archibald Mathematics before the Greeks Science, New Series, Vol.73, No. 1831, (Jan. 31, 1930), pp. 109–121
  14. ^ Annette Imhausen Digitalegypt website: Lahun Papyrus IV.3

Further reading

[edit]
  • Boyer, Carl B. 1968. History of Mathematics. John Wiley. Reprint Princeton U. Press (1985).
  • Chace, Arnold Buffum. 1927–1929. The Rhind Mathematical Papyrus: Free Translation and Commentary with Selected Photographs, Translations, Transliterations and Literal Translations. 2 vols. Classics in Mathematics Education 8. Oberlin: Mathematical Association of America. (Reprinted Reston: National Council of Teachers of Mathematics, 1979). ISBN 0-87353-133-7
  • Clagett, Marshall. 1999. Ancient Egyptian Science: A Source Book. Volume 3: Ancient Egyptian Mathematics. Memoirs of the American Philosophical Society 232. Philadelphia: American Philosophical Society. ISBN 0-87169-232-5
  • Couchoud, Sylvia. 1993. Mathématiques égyptiennes: Recherches sur les connaissances mathématiques de l'égypte pharaonique. Paris: éditions Le Léopard d'Or
  • Daressy, G. "Ostraca," Cairo Museo des Antiquities Egyptiennes Catalogue General Ostraca hieraques, vol 1901, number 25001-25385.
  • Gillings, Richard J. 1972. Mathematics in the Time of the Pharaohs. MIT Press. (Dover reprints available).
  • Imhausen, Annette. 2003. "?gyptische Algorithmen". Wiesbaden: Harrassowitz
  • Johnson, G., Sriraman, B., Saltztstein. 2012. "Where are the plans? A socio-critical and architectural survey of early Egyptian mathematics"| In Bharath Sriraman, Editor. Crossroads in the History of Mathematics and Mathematics Education. The Montana Mathematics Enthusiast Monographs in Mathematics Education 12, Information Age Publishing, Inc., Charlotte, NC
  • Neugebauer, Otto (1969). The Exact Sciences in Antiquity (2 ed.). Dover Publications. ISBN 978-0-486-22332-2.
  • Peet, Thomas Eric. 1923. The Rhind Mathematical Papyrus, British Museum 10057 and 10058. London: The University Press of Liverpool limited and Hodder & Stoughton limited
  • Reimer, David (2014). Count Like an Egyptian: A Hands-on Introduction to Ancient Mathematics. Princeton, NJ: Princeton University Press. ISBN 978-0-691-16012-2.
  • Robins, R. Gay. 1995. "Mathematics, Astronomy, and Calendars in Pharaonic Egypt". In Civilizations of the Ancient Near East, edited by Jack M. Sasson, John R. Baines, Gary Beckman, and Karen S. Rubinson. Vol. 3 of 4 vols. New York: Charles Schribner's Sons. (Reprinted Peabody: Hendrickson Publishers, 2000). 1799–1813
  • Robins, R. Gay, and Charles C. D. Shute. 1987. The Rhind Mathematical Papyrus: An Ancient Egyptian Text. London: British Museum Publications Limited. ISBN 0-7141-0944-4
  • Sarton, George. 1927. Introduction to the History of Science, Vol 1. Willians & Williams.
  • Strudwick, Nigel G., and Ronald J. Leprohon. 2005. Texts from the Pyramid Age. Brill Academic Publishers. ISBN 90-04-13048-9.
  • Struve, Vasilij Vasil'evi?, and Boris Aleksandrovi? Turaev. 1930. Mathematischer Papyrus des Staatlichen Museums der Sch?nen Künste in Moskau. Quellen und Studien zur Geschichte der Mathematik; Abteilung A: Quellen 1. Berlin: J. Springer
  • Van der Waerden, B.L. 1961. Science Awakening. Oxford University Press.
  • Vymazalova, Hana. 2002. Wooden Tablets from Cairo...., Archiv Orientální, Vol 1, pages 27–42.
  • Wirsching, Armin. 2009. Die Pyramiden von Giza – Mathematik in Stein gebaut. (2 ed) Books on Demand. ISBN 978-3-8370-2355-8.
[edit]
7月4是什么星座 penis是什么意思 清对什么 什么东西补肾最好 不长头发是什么原因
猎奇是什么意思 书中自有颜如玉什么意思 蔬菜有什么 书记处书记是什么级别 护士一般是什么学历
头发为什么长不长 tc是什么 佐匹克隆片是什么药 感冒了吃什么 一什么地
氧化锆是什么材料 滑丝是什么意思 张艺兴为什么不退出exo 马齿苋是什么菜 桂花什么时候开
骨髓水肿是什么意思hcv9jop6ns5r.cn 卷帘大将是干什么的hcv8jop5ns8r.cn 类风湿吃什么药好shenchushe.com 气血虚吃什么好hcv9jop4ns0r.cn 共建是什么意思hcv8jop7ns7r.cn
肝肿瘤不能吃什么hcv9jop2ns4r.cn 烧心是什么原因造成的hcv9jop1ns8r.cn wiggle是什么意思hcv7jop4ns7r.cn 谷丙转氨酶偏高是什么意思qingzhougame.com 夏天什么颜色最防晒hcv9jop6ns9r.cn
瘦肉炒什么好吃hcv8jop1ns8r.cn 什么是抑郁hcv9jop7ns0r.cn 星星为什么眨眼睛hcv8jop0ns7r.cn 什么地找hcv9jop7ns2r.cn 什么是医美hcv9jop2ns4r.cn
女人被操是什么感觉hcv9jop4ns8r.cn 九牛一毛指什么生肖hcv9jop7ns1r.cn 什么生意好做又赚钱hcv8jop1ns9r.cn pedro是什么牌子wzqsfys.com 眼眶发青是什么原因hcv8jop7ns2r.cn
百度