什么是假药| 低热吃什么药| 内科主要看什么病| 什么病不能吃核桃| 碳酸盐质玉是什么玉| 圆脸适合什么发型男| 酸麻胀痛痒各代表什么| mri是什么| 高大的动物是什么生肖| 2019是什么生肖| 梦见捡手机是什么意思| 海胆是什么| 低血压高什么原因| 38度吃什么药| 阿司匹林主要治什么病| 第一次要注意什么| 尿道发炎吃什么药| 汤姆猫是什么品种| 什么情况下做胃镜| 甲状腺彩超能查出什么| 膝盖积水是什么原因造成的| 仙人跳是什么意思| 老人反复发烧是什么原因引起的| 隔空打牛是什么意思| 人为什么要读书| 阴囊炎用什么药治疗| 茶叶蛋用什么茶叶| 浙江属于什么方向| 农历5月17日是什么星座| 耳机降噪是什么意思| 泡脚时间长了有什么坏处| 下焦湿热吃什么中成药| 九品芝麻官是什么级别| 叫什么名字好听| 鸡蛋白过敏指的是什么| 嗓子干吃什么药| 肛裂用什么药治最好效果最快| 胆红素三个指标都高是什么原因| 拔罐是什么原理| 前列腺增大伴钙化灶是什么意思| 女性喝什么茶比较好| 精炼植物油是什么油| 扭转乾坤是什么生肖| 呵呵是什么意思啊| doris什么意思| 卵巢囊肿是什么意思| 血小板偏高是什么原因| 羊属于什么科| 反胃恶心吃什么药| 果腹是什么意思| 一什么雨伞| 寻麻疹是什么原因引起的| 蜱虫的天敌是什么| 一生辛苦不得财是什么生肖| 为什么大熊猫是国宝| 汗管瘤什么原因造成| 脱肛是什么| cooc香水是什么牌子的| 水柔棉是什么面料| 下一个台风什么时候来| 湿疹是什么样子| 什么是情商| 女性排卵期有什么表现| 银川有什么特产| pp和pc材质有什么区别| 营养素是什么| 血小板偏低是什么意思| 日本是什么时候投降的| 11点到12点是什么时辰| 食道炎是什么症状| 狗尾巴草的花语是什么| 绿树成荫是什么季节| 16岁可以做什么工作| 什么叫戒断反应| 贫血有什么症状| 朦胧什么意思| 中午吃什么菜| 经常感冒的人吃什么能增强抵抗力| 性早熟有什么症状| 艾滋病脖子有什么症状| 子宫低回声结节是什么意思| 私募是做什么的| 势力是什么意思| 连麦是什么意思| 蚯蚓喜欢吃什么| 1月17号什么星座| 脑缺血灶吃什么药| 为什么不愿意工作| 热痱子用什么药| 烛光晚餐是什么意思| aids是什么病的简称| 由来是什么意思| 女人梦见龙是什么征兆| 伟哥有什么副作用| 六月十五号是什么星座| 怀孕初期应该注意什么| 脑软化灶是什么意思| 老年人脚肿挂什么科| 纯色是什么颜色| 芒果是什么季节的水果| 五月二十三日是什么星座| 荷花是什么时候开的| 一个王一个番读什么| 广州为什么叫花城| 神经衰弱吃什么药效果最好| 雪霁是什么意思| 舌头两边疼是什么原因| 敲木鱼是什么意思| 特殊情况是什么意思| 打嗝不停是什么原因| 风热是什么意思| 950是什么金| 张飞穿针歇后语下一句是什么| 身份证是什么字体| 吃什么蔬菜能降血脂| 淋巴发炎吃什么药好| 保险费率是什么| 颈椎痛吃什么药最好| 梦到别人结婚是什么意思| 体细胞是什么意思| 酸菜鱼用什么鱼| 肚子疼发烧是什么病症| 梦见自己请客吃饭是什么意思| 脚麻木是什么原因| 软件开发需要学什么| 费神是什么意思| 女人做春梦预示着什么| 蔡字五行属什么| 沄字五行属什么| 螨虫长什么样| 肌肉紧张是什么症状| 县政府党组成员什么级别| 荔枝都有什么品种| 朋友圈提到了我是什么意思| 声音小是什么原因| 什么食物含维生素b12最多| 乳痈是什么病| 水漫金山什么意思| 胸部ct平扫能检查出什么| 未时左眼跳是什么预兆| 布洛芬吃多了有什么副作用| 小气是什么意思| 小水母吃什么| 7月12日是什么日子| 分泌性中耳炎吃什么药| 大腿淤青是什么原因| hr阳性是什么意思| 脉濡是什么意思| 什么是蛇缠腰病| 中医心脉受损什么意思| 吃什么可以提升白细胞| 圈癣是什么引起的| 地米是什么药| 心衰竭是什么病严重吗| 滨海新区有什么好玩的地方| 117是什么意思| 4月9日什么星座| 雷贝拉唑钠肠溶片什么时候吃| 铁观音适合什么季节喝| 鲜黄花菜含有什么毒素| 狗为什么会吐| 芹菜和什么菜搭配最好| 发烧适合吃什么水果| 为什么会勃起| 穷代表什么生肖| 内瘘是什么意思| 老司机什么意思| 临床医学学什么| 云南白药植物长什么样| 属龙什么命| 胃病是什么原因引起的| 小米可以和什么一起煮粥| tct检查是什么检查| coo是什么| 摘胆对身体有什么影响| 异什么意思| 鲸鱼用什么呼吸| 征信对个人有什么影响| 胃溃疡适合吃什么水果| 耳朵会动的人说明什么| 公园里有什么有什么还有什么| 睡眠不好用什么药调理| pa是什么单位| 甲肝阳性是什么意思| 感觉抑郁了去医院挂什么科| o和b型生的孩子是什么血型| 紫藤花什么时候开| 人死之前为什么会拉屎| 额头长痘痘什么原因| 地藏菩萨为什么不能拜| 百香果不能和什么一起吃| 手麻挂什么科| 尪痹是什么意思| 梦见偷鸡是什么预兆| 稠是什么意思| 什么面朝天| 公斤的单位是什么| 肌酐高是什么意思| 教是什么生肖| 不服是什么意思| 睾丸疼吃什么药| 十年什么婚| 肚子里的蛔虫是什么意思| 胃疼吃什么| 蒙蔽是什么意思| 白内障用什么眼药水| 早搏是什么意思| 心系是什么意思| 屁股上的骨头叫什么骨| 流鼻涕吃什么药好得快| 近字五行属什么| 2月9日什么星座| 法尔如是是什么意思| bruce是什么意思| 精油是干什么用的| 白细胞偏低吃什么药| 尿潜血十一是什么意思| 阑尾炎手术后可以吃什么水果| 别致是什么意思| 东道主是什么意思| 西宁有什么好玩的| 鼻塞打喷嚏是什么原因| 梗是什么意思| 什么好像什么| 榴莲壳有什么用处| 农垦局是什么性质单位| 蛋白粉什么时间喝最好| 能量棒是什么东西| 傻瓜是什么生肖| 花中西施指的是什么花| 为什么会散光| 睾丸痒用什么药膏最好| 处暑的含义是什么意思| 石榴石五行属什么| 谷氨酰转肽酶是指什么| 缘是什么生肖| hello什么意思| 邮件号码是什么| 青春痘长什么样| 骆驼趾是什么意思| 韩语欧巴是什么意思| 女性大腿酸痛什么原因| 地球是什么星| cde是什么意思| 姑姐是什么意思| 塬字五行属什么| 齐人之福什么意思| 时迁是什么意思| 头晕是什么引起的| 血糖仪什么牌子好| 下午3点到5点是什么时辰| 产品标准号是什么| 血脂高吃什么降血脂| save什么意思| 枣子什么时候成熟| 大便黑色的是什么原因| 安乃近又叫什么名| 出院记录是什么| 关节发黑是什么原因| 蟑螂什么样子| 离岸人民币什么意思| 花容月貌是什么意思| 什么是乳清蛋白粉| 移动硬盘什么牌子好| 百度Jump to content

叶酸在什么食物里最多

From Wikipedia, the free encyclopedia
百度 鼓励各类用地调整为托幼、小学、中学等教育设施和养老设施;鼓励各类用地调整为社区便民服务、菜市场等为本地居民服务的居住公共服务设施;鼓励各类非居住建筑调整为体育健身、剧场影院、图书馆、博物馆等公共文化设施和医疗设施;鼓励工业、仓储、批发市场等用地调整为科技创新用房、高新技术和战略新兴产业用房。

In 1923, American physicist William Duane presented[1] a discrete momentum-exchange model of the reflection of X-ray photons by a crystal lattice. Duane showed that such a model gives the same scattering angles as the ones calculated via a wave diffraction model, see Bragg's Law.

The key feature of Duane's hypothesis is that a simple quantum rule based on the lattice structure alone determines the quanta of momentum that can be exchanged between the crystal lattice and an incident particle.

In effect, the observed scattering patterns are reproduced by a model where the possible reactions of the crystal are quantized, and the incident photons behave as free particles, as opposed to models where the incident particle acts as a wave, and the wave then 'collapses' to one of many possible outcomes.

Duane argued that the way that crystal scattering can be explained by quantization of momentum is not explicable by models based on diffraction by classical waves, as in Bragg's Law.

Duane applied his hypothesis to derive the scattering angles of X-rays by a crystal. Subsequently, the principles that Duane advanced were also seen to provide the correct relationships for optical scattering at gratings, and the diffraction of electrons.[2]

In the early days of diffraction fine details were not observable because the detectors were inefficient, and the sources were also of low intensities. Hence Bragg's law was the only type of diffraction observable, and Duane's approach could model it. Modern electron microscopes and x-ray diffraction instruments are many orders of magnitude brighter, so many find details of electron and x-ray diffraction are now known which cannot be explained by his approach.[3][4][5][6] Hence his approach is no longer used.

Early developments in quantum theory

[edit]

In 1905, Albert Einstein presented the hypothesis that the photoelectric effect could be explained if a beam of light was composed of a stream of discrete particles (photons), each with an energy (E = hf) the energy (E) of each photon being equal to the frequency (f) multiplied by the Planck constant (h).[7] Later, in 1916 Albert Einstein also showed that the recoil of molecules during the emission and absorption of photons was consistent with, and necessary for, a quantum description of thermal radiation processes. Each photon acts as if it imparts a momentum impulse p equal to its energy divided by the speed of light, (p = E/c).[8]

In 1925, shortly before the development of the full mathematical description of quantum mechanics, Born drew Einstein's attention to the then-new idea of "de Broglie's waves". He wrote "It seems to me that a connection of a completely formal kind exists between these and that other mystical explanation of reflection, diffraction and interference using 'spatial' quantisation which Compton and Duane proposed and which has been more closely studied by Epstein and Ehrenfest."[9][10][11] Examining the hypothesis of Duane on quantized translational momentum transfer, as it accounted for X-ray diffraction by crystals,[1] and its follow-up by Compton,[12] Epstein and Ehrenfest had written "The phenomena of Fraunhofer diffraction can be treated as well on the basis of the wave theory of light as by a combination of concept of light quanta with Bohr's principle of correspondence." Later, Born and Biem wrote: "Every physicist must accept Duane's rule."[13]

Using Duane's 1923 hypothesis, the old quantum theory and the de Broglie relation, linking wavelengths and frequencies to energy and momenta, gives an account of diffraction of material particles.[14][15][16][17]

Young's two-slit diffraction experiment, with Fourier analysis

[edit]

Gregory Breit in 1923 pointed out that such quantum translational momentum transfer, examined by Fourier analysis in the old quantum theory, accounts for diffraction even by only two slits.[18] More recently, two slit particle diffraction has been experimentally demonstrated with single-particle buildup of electron diffraction patterns, as may be seen in the photo in this reference[19][20] and with helium atoms and molecules.[21]

Bragg diffraction

[edit]

A wave of wavelength λ is incident at angle θ upon an array of crystal atomic planes, lying in a characteristic orientation, separated by a characteristic distance d. Two rays of the beam are reflected from planes separated by distance nd, where n denotes the number of planes of the separation, and is called the order of diffraction. If θ is such that

then there is constructive interference between the reflected rays, which may be observed in the interference pattern. This is Bragg's law.

The same phenomenon, considered from a different viewpoint, is described by a beam of particles of momentum p incident at angle θ upon the same array of crystal atomic planes. It is supposed that a collective of n such atomic planes reflects the particle, transferring to it a momentum nP, where P is a momentum characteristic of the reflecting planes, in the direction perpendicular to them. The reflection is elastic, with negligible transfer of kinetic energy, because the crystal is massive. The initial momentum of the particle in the direction perpendicular to the reflecting planes was p sin θ. For reflection, the change of momentum of the particle in that direction must be 2p sin θ. Consequently,

This agrees with the observed Bragg condition for the diffraction pattern if θ is such that

or

It is evident that p provides information for a particle viewpoint, while λ provides information for a wave viewpoint. Before the discovery of quantum mechanics, de Broglie in 1923 discovered how to inter-translate the particle viewpoint information and the wave viewpoint information for material particles:[22][23] use the Planck constant and recall Einstein's formula for photons:

It follows that the characteristic quantum of translational momentum P for the crystal planes of interest is given by

[24][25]

Quantum mechanics

[edit]

According to Ballentine, Duane's proposal of quantum translational momentum transfer is no longer needed as a special hypothesis; rather, it is predicted as a theorem of quantum mechanics.[26] It is presented in terms of quantum mechanics by other present day writers also.[27][28][29][30][31][32]

Diffraction

[edit]

One may consider a particle with translational momentum , a vectorial quantity.

In the simplest example of scattering of two colliding particles with initial momenta , resulting in final momenta . The momentum transfer is given by

where the last identity expresses momentum conservation.[33]

In diffraction, the difference of the momenta of the scattered particle and the incident particle is called momentum transfer.

Such phenomena can also be considered from a wave viewpoint, by use of the reduced Planck constant . The wave number is the absolute value of the wave vector , which is related to the wavelength . Often, momentum transfer is given in wavenumber units in reciprocal length

Momentum transfer is an important quantity because is a better measure for the typical distance resolution of the reaction than the momenta themselves.

Bragg diffraction occurs on the atomic crystal lattice. It conserves the particle energy and thus is called elastic scattering. The wave numbers of the final and incident particles, and , respectively, are equal. Just the direction changes by a reciprocal lattice vector with the relation to the lattice spacing . As momentum is conserved, the transfer of momentum occurs to crystal momentum.

For the investigation of condensed matter, neutron, X-ray and electron diffraction are nowadays commonly studied as momentum transfer processes.[34][35]


Physical accounts of wave and of particle diffraction

[edit]

The phenomena may be analysed in several appropriate ways. The incoming and outgoing diffracted objects may be treated severally as particles or as waves. The diffracting object may be treated as a macroscopic classical object free of quantum features, or it may be treated as a physical object with essentially quantum character. Several cases of these forms of analysis, of which there are eight, have been considered. For example, Schr?dinger proposed a purely wave account of the Compton effect.[36][37]

Classical diffractor

[edit]

A classical diffractor is devoid of quantum character. For diffraction, classical physics usually considers the case of an incoming and an outgoing wave, not of particle beams. When diffraction of particle beams was discovered by experiment, it seemed fitting to many writers to continue to think in terms of classical diffractors, formally belonging to the macroscopic laboratory apparatus, and of wave character belonging to the quantum object that suffers diffraction.

It seems that Heisenberg in 1927 was thinking in terms of a classical diffractor. According to Bacciagaluppi & Crull (2009), Heisenberg in 1927 recognized that "the electron is deflected only in the discrete directions that depend on the global properties of the grating". Nevertheless, it seems that this did not lead him to think that the collective global properties of the grating should make it a diffractor with corresponding quantal properties, such as would supply the diffracted electron with a definite trajectory. It seems, rather, that he thought of the diffraction as necessarily a manifestation of wave character belonging to the electron. It seems that he felt this was necessary to explain interference when the electron was detected far from the diffractor.[38] Thus it seems possible that in 1927, Heisenberg was not thinking in terms of Duane's hypothesis of quantal transfer of translative momentum. By 1930, however, Heisenberg thought enough of Duane's hypothesis to expound it in his textbook.[24]

Quantum diffractor

[edit]

A quantum diffractor has an essentially quantum character. It was first conceived of in 1923 by William Duane, in the days of the old quantum theory, to account for diffraction of X-rays as particles according to Einstein's new conception of them, as carriers of quanta of momentum. The diffractor was imagined as exhibiting quantum transfer of translational momentum, in close analogy with transfer of angular momentum in integer multiples of the Planck constant. The quantum of translational momentum was proposed to be explained by global quantum physical properties of the diffractor arising from its spatial periodicity. This is consonant with present-day quantum mechanical thinking, in which macroscopic physical bodies are conceived as supporting collective modes,[39] manifest for example in quantized quasi-particles, such as phonons. Formally, the diffractor belongs to the quantum system, not to the classical laboratory apparatus.

References

[edit]
  1. ^ a b Duane, W. (1923). The transfer in quanta of radiation momentum to matter, Proc. Natl. Acad. Sci. 9(5): 158–164.
  2. ^ Bitsakis, E.(1997). The wave-particle duality, pp. 333–348 in The Present Status of the Quantum Theory of Light: Proceedings of a Symposium in Honour of Jean-Pierre Vigier, edited by Whitney, C.K., Jeffers, S., Roy, S., Vigier, J.-P., Hunter, G., Springer, ISBN 978-94-010-6396-8, p. 338.
  3. ^ COWLEY, JOHN M. (1995), "Diffraction from crystals", Diffraction Physics, Elsevier, pp. 123–144, doi:10.1016/b978-044482218-5/50008-0, ISBN 9780444822185, retrieved 2025-08-05
  4. ^ Cullity, Bernard D.; Stock, Stuart R. (2001). Elements of X-ray diffraction (3rd ed.). Upper Saddle River, NJ: Prentice Hall. ISBN 978-0-201-61091-8.
  5. ^ Warren, Bertram Eugene (1990). X-ray diffraction. Dover books on physics and chemistry. New York: Dover. ISBN 978-0-486-66317-3.
  6. ^ Peng, L.-M.; Dudarev, S. L.; Whelan, M. J. (2011). High energy electron diffraction and microscopy. Monographs on the physics and chemistry of materials (1. publ. in paperback ed.). Oxford: Oxford Univ. Press. ISBN 978-0-19-960224-7.
  7. ^ Einstein, A. (1905). "über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt". Annalen der Physik. 17 (6): 132–148. Bibcode:1905AnP...322..132E. doi:10.1002/andp.19053220607. Translated in Arons, A. B.; Peppard, M. B. (1965). "Einstein's proposal of the photon concept: A translation of the Annalen der Physik paper of 1905" (PDF). American Journal of Physics. 33 (5): 367. Bibcode:1965AmJPh..33..367A. doi:10.1119/1.1971542. Archived from the original (PDF) on 2025-08-05. Retrieved 2025-08-05.
  8. ^ Einstein, A. (1916). "Zur Quantentheorie der Strahlung". Mitteilungen der Physikalischen Gesellschaft Zürich. 18: 47–62. and a nearly identical version Einstein, A. (1917). "Zur Quantentheorie der Strahlung". Physikalische Zeitschrift. 18: 121–128. Bibcode:1917PhyZ...18..121E. Translated here [1] and in ter Haar, D. (1967). The Old Quantum Theory. Pergamon Press. pp. 167–183. LCCN 66029628.
  9. ^ Born, M. (1925/1971). Letter of 15 July 1925, pp. 84–85 in The Born-Einstein Letters, translated by I. Born, Macmillan, London.
  10. ^ Epstein, P.S., Ehrenfest, P., (1924). The quantum theory of the Fraunhofer diffraction, Proc. Natl. Acad. Sci. 10: 133–139.
  11. ^ Ehrenfest, P., Epstein, P.S. (1924/1927). Remarks on the quantum theory of diffraction, Proc. Natl. Acad. Sci. 13: 400–408.
  12. ^ Compton, A.H. (1923). The quantum integral and diffraction by a crystal, Proc. Natl. Acad. Sci. 9(11): 360–362.
  13. ^ Landé, A., Born, M., Biem, W. (1968). 'Dialog on dualism', Physics Today, 21(8): 55–56; doi:10.1063/1.3035103.
  14. ^ Heisenberg, W. (1930). The Physical Principles of the Quantum Theory, translated by C. Eckart and F.C. Hoyt, University of Chicago Press, Chicago, pp. 77–78.
  15. ^ Pauling, L.C., Wilson, E.B. (1935). Introduction to Quantum Mechanics: with Applications to Chemistry, McGraw-Hill, New York, pp. 34–36.
  16. ^ Landé, A. (1951). Quantum Mechanics, Sir Isaac Pitman and Sons, London, pp. 19–22.
  17. ^ Bohm, D. (1951). Quantum Theory, Prentice Hall, New York, pp. 71–73.
  18. ^ Breit, G. (1923). The interference of light and the quantum theory, Proc. Natl. Acad. Sci. 9: 238–243.
  19. ^ Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T., Ezawa, H. (1989). Demonstration of single‐electron buildup of an interference pattern, Am. J. Phys. 57(2): 117–120.
  20. ^ Dragoman, D. Dragoman, M. (2004). Quantum–Classical Analogies, Springer, Berlin, ISBN 3-540-20147-5, pp. 170–175.
  21. ^ Schmidt, L.P.H., Lower, J., Jahnke, T., Sch??ler, S., Sch?ffler, M.S., Menssen, A., Lévêque, C., Sisourat, N., Ta?eb, R., Schmidt-B?cking, H., D?rner, R. (2013). Momentum transfer to a free floating double slit: realization of a thought experiment from the Einstein-Bohr debates, Physical Review Letters 111: 103201, 1–5.
  22. ^ Bohr, N. (1948). On the notions of causality and complementarity, Dialectica 2: 312–319; p. 313: "It is further important to realize that any determination of Planck's constant rests upon the comparison between aspects of the phenomena which can be described only by means of pictures not combinable on the basis of classical theories."
  23. ^ Messiah, A. (1961). Quantum Mechanics, volume 1, translated by G.M. Temmer from the French Mécanique Quantique, North-Holland, Amsterdam, p. 52, "relations between dynamical variables of the particle and characteristic quantities of the associated wave".
  24. ^ a b Heisenberg, W. (1930). The Physical Principles of the Quantum Theory, translated by C. Eckart and F.C. Hoyt, University of Chicago Press, Chicago, p. 77.
  25. ^ Landé, A. (1951). Quantum Mechanics, Sir Isaac Pitman and Sons, London, p. 20.
  26. ^ Ballentine, L.E. (1998). Quantum Mechanics: a Modern Development, World Scientific, Singapore, ISBN 981-02-2707-8, p. 136.
  27. ^ Van Vliet, K. (1967). Linear momentum quantization in periodic structures, Physica, 35: 97–106, doi:10.1016/0031-8914(67)90138-3.
  28. ^ Van Vliet, K. (2010). Linear momentum quantization in periodic structures ii, Physica A, 389: 1585–1593, doi:10.1016/j.physa.2009.12.026.
  29. ^ Thankappan, V.K. (1985/2012). Quantum Mechanics, third edition, New Age International, New Delhi, ISBN 978-81-224-3357-9, pp. 6–7.
  30. ^ Wennerstrom, H. (2014). Scattering and diffraction described using the momentum representation, Advances in Colloid and Interface Science, 205: 105–112.
  31. ^ Mehra, J., Rechenberg, H. (2001). The Historical Development of Quantum Theory, volume 1, part 2, Springer, pp. 555–556 here.
  32. ^ Hickey, T.J. (2014). Twentieth-Century Philosophy of Science:a History, self-published by the author, here.
  33. ^ Prigogine, I. (1962). Non-equilibrium Statistical Mechanics, Wiley, New York, pp. 258–262.
  34. ^ Squires, G.L. (1978/2012). Introduction to the Theory of Thermal Neutron Scattering, third edition, Cambridge University Press, Cambridge UK, ISBN 978-110-764406-9.
  35. ^ B?ni, P., Furrer, A. (1999). Introduction to neutron scattering, Chapter 1, pp. 1–27 of Frontiers of Neutron Scattering, edited by A. Furrer, World Scientific, Singapore, ISBN 981-02-4069-4.
  36. ^ Schr?dinger, E. (1927). über den Comptoneffekt, Annalen der Physik series 4, 82<387(2)>: 257–264. Translated from the second German edition by J.F. Shearer, W.M. Deans at pp. 124–129 in Collected papers on Wave Mechanics, Blackie & Son, London (1928).
  37. ^ Landé, A. (1951). Quantum Mechanics, Sir Isaac Pitman and Sons, London pp. 16–18.
  38. ^ Bacciagaluppi, G., Crull, E. (2009). Heisenberg (and Schr?dinger, and Pauli) on hidden variables, Studies in History and Philosophy of Modern Physics, 40: 374–382.
  39. ^ Heisenberg, W. (1969/1985) The concept of "understanding" in theoretical physics, pp. 7–10 in Properties of Matter Under Unusual Conditions (In Honor of Edward Teller's 60th Birthday), edited by H. Mark, S. Fernbach, Interscience Publishers, New York, reprinted at pp. 335–339 in Heisenberg, W., Collected Works, series C, volume 3, ed. W. Blum, H.-P. Dürr, H. Rechenberg, Piper, Munich, ISBN 3-492-02927-2, p. 336.
银行卡销户是什么意思 大小周是什么意思 70年是什么婚 梦到男孩子是什么意思 酸奶什么时候喝最好
乔字五行属什么 15一16岁青少年腰疼是什么病 阿达是什么意思 梦到棺材什么意思 五十岁是什么之年
地笼捕河虾用什么诱饵 夫妻分房睡意味着什么 花生有什么营养 拔牙后吃什么消炎药 建兰什么时候开花
亚麻籽油是什么油 欢乐海岸有什么好玩的 男人为什么喜欢吃奶 从政是什么意思 为什么不建议小孩吃罗红霉素
铁观音属于什么茶类hcv8jop2ns3r.cn 乌鸦叫预示什么hcv8jop9ns0r.cn 突然全身抽搐是什么病huizhijixie.com 刘诗诗是什么样的人hcv8jop1ns9r.cn 检查淋巴挂什么科hcv7jop7ns3r.cn
81年的鸡是什么命hcv8jop7ns5r.cn 什么是碱性水果hcv8jop0ns1r.cn ny是什么牌子xinjiangjialails.com 驴血是什么颜色hcv7jop7ns4r.cn 吃栗子有什么好处hcv9jop7ns3r.cn
为什么喝完酒头疼hcv8jop5ns3r.cn 黄花胶是什么鱼的胶hcv9jop5ns7r.cn 手肿是什么原因hcv7jop7ns4r.cn 血压高不能吃什么hcv9jop5ns3r.cn 尿素氮是什么意思hcv8jop1ns3r.cn
吃什么降糖最快hcv8jop3ns3r.cn 泥鳅吃什么东西hcv8jop4ns8r.cn 中国女人裹脚是从什么时候开始cj623037.com 高密度脂蛋白胆固醇偏低是什么原因hcv9jop2ns5r.cn 为什么吃了避孕药还是怀孕了hcv9jop3ns0r.cn
百度