为什么口臭| 朋友搬家送什么礼物好| tct是什么意思| 唇红齿白是什么生肖| 特效药是什么意思| 血氧饱和度是什么| 9月17日是什么星座| 格调是什么意思| 罗贯中和施耐庵是什么关系| 私处痒是什么原因| 水泥烧伤皮肤用什么药| 五险一金是指什么| 企鹅是什么动物| 艾滋病初期皮疹是什么样的| 2021年是什么命| 手指发麻是什么原因| 比肩什么意思| 绿豆配什么打豆浆最好| 什么叫环比| 老人爱睡觉是什么原因| 代孕什么意思| 什么是辛辣食物| 喝益生菌有什么好处| 为什么13周不让建卡了| 日本旅游买什么东西最划算| 晚上8点是什么时辰| 公鸡的尾巴有什么作用| 身体缺镁会有什么症状| 现在的节气是什么| 白露是什么意思| 鼻窦在什么位置图片| 肠胃炎应该注意什么| 拔罐为什么会起水泡| 木薯淀粉可以用什么代替| 益生菌什么牌子好| 巴基斯坦是什么人种| 隔的右边念什么| 白细胞介素是什么| 吃什么会影响验孕棒检验结果| 公务员国考和省考有什么区别| 黄疸肝炎有什么症状| 海豚吃什么| 河字五行属什么| 心肌梗塞是什么原因引起的| 油墨用什么可以洗掉| 夏天哈尔滨有什么好玩的地方| 双向情感障碍是什么病| 水满则溢月盈则亏是什么意思| 梦见捡鸡蛋是什么意思| 枸杞不能和什么一起吃| 万箭穿心代表什么生肖| 鹿茸有什么作用| 现在吃什么水果| 卵巢检查做什么项目| 经常胃胀是什么原因| 牙套什么年龄戴合适| 球鞋ep是什么意思| INS什么意思| 惊为天人是什么意思| 奇异果是什么水果| 尿酸高尿液是什么颜色| pg是什么激素| 下呼吸道是指什么部位| 1912年属什么生肖| 不动明王是什么属相的本命佛| 29是什么生肖| 媱字五行属什么| btob是什么意思| 柚子什么时候成熟| 人得猫癣用什么药| 月青念什么| 一个巾一个占念什么| 翊字五行属什么| 竹笋不能和什么一起吃| 男人左眼皮跳是什么预兆| cpi指数是什么意思| 怀孕两天会有什么反应| 右眼跳什么| 耳机降噪是什么意思| 蕾字五行属什么| 朋友妻不可欺是什么意思| 迟脉是什么意思| 什么是援交| 鼓动是什么意思| 内分泌紊乱吃什么药| 乳房边缘疼是什么原因| 什么孩子该看心理医生| 甲状腺弥漫性病变是什么意思| 感染艾滋病有什么症状| 自主意识是什么意思| 肌红蛋白偏低说明什么| 男士脸黑穿什么颜色好| 什么是脑梗塞| 八面玲珑是指什么生肖| 铉是什么意思| 卵巢囊肿吃什么食物好| 妇科千金片和三金片有什么区别| 补铁吃什么食物好| 中元节出什么生肖| 胸膜炎吃什么消炎药| 诱发电位是检查什么病的| 电焊打眼最有效最快的方法是什么| 什么是独角兽企业| 女性尿频尿急挂什么科| 怀孕吃什么会流产| 什么是ts| 狗皮肤溃烂用什么药| 梦见好多西瓜是什么意思| 膀胱结石是什么症状| 痰多吃什么好化痰| 中性粒细胞高是什么原因| 角化型脚气用什么药膏| 冰糖和白糖有什么区别| 上户口需要什么资料| 溶菌酶是什么| 胸部胀疼是什么原因| 6月4号什么星座| 经期头疼吃什么药效果最好| 脚突然抽筋是什么原因| 西泮片是什么药| 乳酸脱氢酶偏低是什么意思| 镜框什么材质好| 喝什么茶降血脂| 吃什么清肝火最快| 夏天肚子疼是什么原因| 强直性脊柱炎有什么症状| 什么弓什么箭| 墨绿色是什么颜色| 喉咙疼痛吃什么药| 淋巴肉为什么不能吃| 旭日东升是什么生肖| 痰湿体质吃什么中成药| 阉人什么意思| 金针菇炒什么好吃| 相刑什么意思| 喝蒲公英根有什么好处| 什么是尿失禁| seconds是什么意思| 黄精泡水喝有什么功效| 痛风能吃什么鱼| 月经后期是什么意思| 结肠炎吃什么药好| 牙齿打桩是什么意思| pku什么意思| 眼睛老跳是什么原因| 各自安好什么意思| 慈是什么意思| 风水宝地是什么意思| 州字五行属什么| 脱脂棉是什么| 河东狮吼什么意思| 用什么梳子梳头发最好| cto是什么意思| 驾校教练需要什么条件| 鸽子单眼伤风用什么药| 姨妈期间不能吃什么| 月子可以吃什么菜| 什么能什么力| 1月15号是什么星座| 画是什么生肖| 尿酸低会引发什么症状| 乳腺b超挂什么科| 狗狗拉肚子是什么原因| 犹太人为什么聪明| 芙蓉花长什么样| 脂肪肝吃什么| 小熊衣服叫什么牌子| 黄芪什么季节喝最好| 香蕉不能和什么水果一起吃| 伊人什么意思| 大连机场叫什么| 九月三号是什么星座| 梦见修坟墓是什么预兆| 孔子名叫什么| 打车用什么软件| 副部级是什么级别| 晴纶是什么材质| 点痣后用什么修复最好| 维生素b族什么时候吃| 猪肉什么馅的饺子好吃| 27岁属什么生肖| 白细胞低有什么危害| 女人喝甘草水有什么好处| 口干口苦是什么原因引起的| 卤米松软膏主治什么| 氯化钠敷脸有什么作用| 九朵玫瑰花代表什么意思| 来来来喝完这杯还有三杯是什么歌| 独在异乡为异客异是什么意思| 狗狗中毒了用什么办法可以解毒| 经常头疼挂什么科| 结痂什么意思| 太傅是什么官| 阴道菌群失调用什么药| 樱桃跟车厘子有什么区别| 吐白痰是什么原因| 结婚一年是什么婚| 蜱虫咬人后有什么症状| 措施是什么意思| 手脚麻木吃什么药| 秋葵有什么作用| 潮喷是什么感觉| 排酸肉是什么意思| 是什么符号| 嘴里发甜是什么原因| 处女膜是什么样的| 客家人什么意思| 533是什么意思| 肝多发钙化灶什么意思| 半夜三更是什么生肖| 雷锋是什么生肖| 关帝庙求什么最灵| 6月24是什么日子| 孩子手脚冰凉是什么原因| 什么是隐形矫正牙齿| tp是什么| 崽崽是什么意思| 医调委是什么机构| 阿sir什么意思| 狗咬了不能吃什么| 东北人喜欢吃什么菜| 肝不好有什么症状有哪些表现| 03属什么| 三点水山今读什么| 推背有什么好处和坏处| 嘈杂是什么意思| 中国是什么人种| 漂流需要带什么| 96年属什么生肖| 不着相是什么意思| 加白是什么意思| 长溃疡是缺什么维生素| 什么水用不完| 肚脐眼大代表什么| alike是什么意思| 来大姨妈前有什么症状| 酒不能和什么一起吃| 胸膜炎吃什么药好| 非浅表性胃炎是什么意思| 转头头晕是什么原因| 福禄是什么意思| 露酒是什么酒| 羊肉和什么菜包饺子好吃| 腮帮子疼吃什么药| 肺部真菌感染用什么药最好| 血小板低吃什么水果好| 口干是什么原因| 肝内低密度影是什么意思| 为什么马卡龙那么贵| 五角硬币是什么材质| 男人时间短吃什么药| 什么时期最容易怀孕| 液氨是什么| 为什么会晕车| 表白送什么花| 血精和精囊炎吃什么药| 异性是什么意思| 脂肪由什么组成| 吃什么可以来月经最快最有效| 胰腺炎的症状是什么| 夏天手上长小水泡是什么原因| 什么季节补钙效果最好| 流产用什么药最快| 师傅是什么意思| 百度Jump to content

广西脑科医院召开2017年党风廉政和行风建设工作会议

From Wikipedia, the free encyclopedia
百度 我们知道,广义相对论预言了一种天体,叫做“黑洞”。

A gyrovector space is a mathematical concept proposed by Abraham A. Ungar for studying hyperbolic geometry in analogy to the way vector spaces are used in Euclidean geometry.[1] Ungar introduced the concept of gyrovectors that have addition based on gyrogroups instead of vectors which have addition based on groups. Ungar developed his concept as a tool for the formulation of special relativity as an alternative to the use of Lorentz transformations to represent compositions of velocities (also called boosts – "boosts" are aspects of relative velocities, and should not be conflated with "translations"). This is achieved by introducing "gyro operators"; two 3d velocity vectors are used to construct an operator, which acts on another 3d velocity.

Name

[edit]

Gyrogroups are weakly associative group-like structures. Ungar proposed the term gyrogroup for what he called a gyrocommutative-gyrogroup, with the term gyrogroup being reserved for the non-gyrocommutative case, in analogy with groups vs. abelian groups. Gyrogroups are a type of Bol loop. Gyrocommutative gyrogroups are equivalent to K-loops[2] although defined differently. The terms Bruck loop[3] and dyadic symset[4] are also in use.

Mathematics of gyrovector spaces

[edit]

Gyrogroups

[edit]

Axioms

[edit]

A gyrogroup (G, ) consists of an underlying set G and a binary operation satisfying the following axioms:

  1. In G there is at least one element 0 called a left identity with 0 a = a for all a in G.
  2. For each a in G there is an element a in G called a left inverse of a with (a) a = 0.
  3. For any a, b, c in G there exists a unique element gyr[a,b]c in G such that the binary operation obeys the left gyroassociative law: a (b c) = (a b) gyr[a,b]c
  4. The map gyr[a,b]: GG given by c ? gyr[a,b]c is an automorphism of the magma (G, ) – that is, gyr[a,b] is a member of Aut(G, ) and the automorphism gyr[a,b] of G is called the gyroautomorphism of G generated by ab in G. The operation gyr: G × G → Aut(G) is called the gyrator of G.
  5. The gyroautomorphism gyr[a,b] has the left loop property gyr[a,b] = gyr[a b,b]

The first pair of axioms are like the group axioms. The last pair present the gyrator axioms and the middle axiom links the two pairs.

Since a gyrogroup has inverses and an identity it qualifies as a quasigroup and a loop.

Gyrogroups are a generalization of groups. Every group is an example of a gyrogroup with gyr[a,b] defined as the identity map for all a and b in G.

An example of a finite gyrogroup is given in [5].

Identities

[edit]

Some identities which hold in any gyrogroup (G, ) are:

  1. (gyration)
  2. (left associativity)
  3. (right associativity)

Furthermore, one may prove the Gyration inversion law, which is the motivation for the definition of gyrocommutativity below:

  1. (gyration inversion law)

Some additional theorems satisfied by the Gyration group of any gyrogroup include:

  1. (identity gyrations)
  2. (gyroautomorphism inversion law)
  3. (gyration even property)
  4. (right loop property)
  5. (left loop property)

More identities given on page 50 of [6]. One particularly useful consequence of the above identities is that Gyrogroups satisfy the left Bol property

Gyrocommutativity

[edit]

A gyrogroup (G,) is gyrocommutative if its binary operation obeys the gyrocommutative law: a b = gyr[a,b](b a). For relativistic velocity addition, this formula showing the role of rotation relating a + b and b + a was published in 1914 by Ludwik Silberstein.[7][8]

Coaddition

[edit]

In every gyrogroup, a second operation can be defined called coaddition: a b = a gyr[a,b]b for all a, b ∈ G. Coaddition is commutative if the gyrogroup addition is gyrocommutative.

Beltrami–Klein disc/ball model and Einstein addition

[edit]

Relativistic velocities can be considered as points in the Beltrami–Klein model of hyperbolic geometry and so vector addition in the Beltrami–Klein model can be given by the velocity addition formula. In order for the formula to generalize to vector addition in hyperbolic space of dimensions greater than 3, the formula must be written in a form that avoids use of the cross product in favour of the dot product.

In the general case, the Einstein velocity addition of two velocities and is given in coordinate-independent form as:

where is the gamma factor given by the equation .

Using coordinates this becomes:

where .

Einstein velocity addition is commutative and associative only when and are parallel. In fact

and

where "gyr" is the mathematical abstraction of Thomas precession into an operator called Thomas gyration and given by

for all w. Thomas precession has an interpretation in hyperbolic geometry as the negative hyperbolic triangle defect.

Lorentz transformation composition

[edit]

If the 3 × 3 matrix form of the rotation applied to 3-coordinates is given by gyr[u,v], then the 4 × 4 matrix rotation applied to 4-coordinates is given by:

.[9]

The composition of two Lorentz boosts B(u) and B(v) of velocities u and v is given by:[9][10]

This fact that either B(uv) or B(vu) can be used depending whether you write the rotation before or after explains the velocity composition paradox.

The composition of two Lorentz transformations L(u,U) and L(v,V) which include rotations U and V is given by:[11]

In the above, a boost can be represented as a 4 × 4 matrix. The boost matrix B(v) means the boost B that uses the components of v, i.e. v1, v2, v3 in the entries of the matrix, or rather the components of v/c in the representation that is used in the section Lorentz transformation#Matrix forms. The matrix entries depend on the components of the 3-velocity v, and that's what the notation B(v) means. It could be argued that the entries depend on the components of the 4-velocity because 3 of the entries of the 4-velocity are the same as the entries of the 3-velocity, but the usefulness of parameterizing the boost by 3-velocity is that the resultant boost you get from the composition of two boosts uses the components of the 3-velocity composition uv in the 4 × 4 matrix B(uv). But the resultant boost also needs to be multiplied by a rotation matrix because boost composition (i.e. the multiplication of two 4 × 4 matrices) results not in a pure boost but a boost and a rotation, i.e. a 4 × 4 matrix that corresponds to the rotation Gyr[u,v] to get B(u)B(v) = B(uv)Gyr[u,v] = Gyr[u,v]B(vu).

Einstein gyrovector spaces

[edit]

Let s be any positive constant, let (V,+,.) be any real inner product space and let Vs={v  ∈  V :|v|<s}. An Einstein gyrovector space (Vs) is an Einstein gyrogroup (Vs) with scalar multiplication given by rv = s tanh(r tanh?1(|v|/s))v/|v| where r is any real number, v  ∈ Vs, v ≠ 0 and r  0 = 0 with the notation v  r = r  v.

Einstein scalar multiplication does not distribute over Einstein addition except when the gyrovectors are colinear (monodistributivity), but it has other properties of vector spaces: For any positive integer n and for all real numbers r,r1,r2 and v  ∈ Vs:

n  v = v  ...  v n terms
(r1 + r2 v = r1  v  r2  v Scalar distributive law
(r1r2 v = r1  (r2  v) Scalar associative law
r (r1  a  r2  a) = r (r1  a r (r2  a) Monodistributive law

Poincaré disc/ball model and M?bius addition

[edit]

The M?bius transformation of the open unit disc in the complex plane is given by the polar decomposition

[citation needed][clarification needed] which can be written as which defines the M?bius addition .

To generalize this to higher dimensions the complex numbers are considered as vectors in the plane , and M?bius addition is rewritten in vector form as:

This gives the vector addition of points in the Poincaré ball model of hyperbolic geometry where radius s=1 for the complex unit disc now becomes any s>0.

M?bius gyrovector spaces

[edit]

Let s be any positive constant, let (V,+,.) be any real inner product space and let Vs={v  ∈  V :|v|<s}. A M?bius gyrovector space (Vs) is a M?bius gyrogroup (Vs) with scalar multiplication given by r v = s tanh(r tanh?1(|v|/s))v/|v| where r is any real number, v  ∈ Vs, v ≠ 0 and r  0 = 0 with the notation v  r = r  v.

M?bius scalar multiplication coincides with Einstein scalar multiplication (see section above) and this stems from M?bius addition and Einstein addition coinciding for vectors that are parallel.

Proper velocity space model and proper velocity addition

[edit]

A proper velocity space model of hyperbolic geometry is given by proper velocities with vector addition given by the proper velocity addition formula:[6][12][13]

where is the beta factor given by .

This formula provides a model that uses a whole space compared to other models of hyperbolic geometry which use discs or half-planes.

A proper velocity gyrovector space is a real inner product space V, with the proper velocity gyrogroup addition and with scalar multiplication defined by r v = s sinh(r sinh?1(|v|/s))v/|v| where r is any real number, v  ∈ V, v ≠ 0 and r  0 = 0 with the notation v  r = r  v.

Isomorphisms

[edit]

A gyrovector space isomorphism preserves gyrogroup addition and scalar multiplication and the inner product.

The three gyrovector spaces M?bius, Einstein and Proper Velocity are isomorphic.

If M, E and U are M?bius, Einstein and Proper Velocity gyrovector spaces respectively with elements vm, ve and vu then the isomorphisms are given by:

EU by
UE by
EM by
ME by
MU by
UM by

From this table the relation between and is given by the equations:

This is related to the connection between M?bius transformations and Lorentz transformations.

Gyrotrigonometry

[edit]

Gyrotrigonometry is the use of gyroconcepts to study hyperbolic triangles.

Hyperbolic trigonometry as usually studied uses the hyperbolic functions cosh, sinh etc., and this contrasts with spherical trigonometry which uses the Euclidean trigonometric functions cos, sin, but with spherical triangle identities instead of ordinary plane triangle identities. Gyrotrigonometry takes the approach of using the ordinary trigonometric functions but in conjunction with gyrotriangle identities.

Triangle centers

[edit]

The study of triangle centers traditionally is concerned with Euclidean geometry, but triangle centers can also be studied in hyperbolic geometry. Using gyrotrigonometry, expressions for trigonometric barycentric coordinates can be calculated that have the same form for both euclidean and hyperbolic geometry. In order for the expressions to coincide, the expressions must not encapsulate the specification of the anglesum being 180 degrees.[14][15][16]

Gyroparallelogram addition

[edit]

Using gyrotrigonometry, a gyrovector addition can be found which operates according to the gyroparallelogram law. This is the coaddition to the gyrogroup operation. Gyroparallelogram addition is commutative.

The gyroparallelogram law is similar to the parallelogram law in that a gyroparallelogram is a hyperbolic quadrilateral the two gyrodiagonals of which intersect at their gyromidpoints, just as a parallelogram is a Euclidean quadrilateral the two diagonals of which intersect at their midpoints.[17]

Bloch vectors

[edit]

Bloch vectors which belong to the open unit ball of the Euclidean 3-space, can be studied with Einstein addition[18] or M?bius addition.[6]

Book reviews

[edit]

A review of one of the earlier gyrovector books[19] says the following:

"Over the years, there have been a handful of attempts to promote the non-Euclidean style for use in problem solving in relativity and electrodynamics, the failure of which to attract any substantial following, compounded by the absence of any positive results must give pause to anyone considering a similar undertaking. Until recently, no one was in a position to offer an improvement on the tools available since 1912. In his new book, Ungar furnishes the crucial missing element from the panoply of the non-Euclidean style: an elegant nonassociative algebraic formalism that fully exploits the structure of Einstein’s law of velocity composition."[20]

Notes and references

[edit]
  1. ^ Abraham A. Ungar (2005), "Analytic Hyperbolic Geometry: Mathematical Foundations and Applications", Published by World Scientific, ISBN 981-256-457-8, ISBN 978-981-256-457-3
  2. ^ Hubert Kiechle (2002), "Theory of K-loops", Published by Springer,ISBN 3-540-43262-0, ISBN 978-3-540-43262-3
  3. ^ Larissa Sbitneva (2001), Nonassociative Geometry of Special Relativity, International Journal of Theoretical Physics, Springer, Vol.40, No.1 / Jan 2001 doi:10.1023/A:1003764217705
  4. ^ J lawson Y Lim (2004), Means on dyadic symmetrie sets and polar decompositions, Abhandlungen aus dem Mathematischen Seminar der Universit?t Hamburg, Springer, Vol.74, No.1 / Dec 2004 doi:10.1007/BF02941530
  5. ^ Ungar, A.A. (2000). "Hyperbolic trigonometry in the Einstein relativistic velocity model of hyperbolic geometry". Computers & Mathematics with Applications. 40 (2–3): 313–332 [317]. doi:10.1016/S0898-1221(00)00163-2.
  6. ^ a b c Analytic hyperbolic geometry and Albert Einstein's special theory of relativity, Abraham A. Ungar, World Scientific, 2008, ISBN 978-981-277-229-9
  7. ^ Ludwik Silberstein, The theory of relativity, Macmillan, 1914
  8. ^ Page 214, Chapter 5, Symplectic matrices: first order systems and special relativity, Mark Kauderer, World Scientific, 1994, ISBN 978-981-02-1984-0
  9. ^ a b Ungar, A. A: The relativistic velocity composition paradox and the Thomas rotation. Found. Phys. 19, 1385–1396 (1989) doi:10.1007/BF00732759
  10. ^ Ungar, A. A. (2000). "The relativistic composite-velocity reciprocity principle". Foundations of Physics. 30 (2). Springer: 331–342. Bibcode:2000FoPh...30..331U. CiteSeerX 10.1.1.35.1131. doi:10.1023/A:1003653302643. S2CID 118634052.
  11. ^ eq. (55), Thomas rotation and the parametrization of the Lorentz transformation group, AA Ungar – Foundations of Physics Letters, 1988
  12. ^ Thomas Precession: Its Underlying Gyrogroup Axioms and Their Use in Hyperbolic Geometry and Relativistic Physics, Abraham A. Ungar, Foundations of Physics, Vol. 27, No. 6, 1997 doi:10.1007/BF02550347
  13. ^ Ungar, A. A. (2006), "The relativistic proper-velocity transformation group" Archived 2025-08-05 at the Wayback Machine, Progress in Electromagnetics Research, PIER 60, pp. 85–94, equation (12)
  14. ^ Hyperbolic Barycentric Coordinates, Abraham A. Ungar, The Australian Journal of Mathematical Analysis and Applications, AJMAA, Volume 6, Issue 1, Article 18, pp. 1–35, 2009
  15. ^ Hyperbolic Triangle Centers: The Special Relativistic Approach, Abraham Ungar, Springer, 2010
  16. ^ Barycentric Calculus In Euclidean And Hyperbolic Geometry: A Comparative Introduction Archived 2025-08-05 at the Wayback Machine, Abraham Ungar, World Scientific, 2010
  17. ^ Abraham A. Ungar (2009), "A Gyrovector Space Approach to Hyperbolic Geometry", Morgan & Claypool, ISBN 1-59829-822-4, ISBN 978-1-59829-822-2
  18. ^ Geometric observation for the Bures fidelity between two states of a qubit, Jing-Ling Chen, Libin Fu, Abraham A. Ungar, Xian-Geng Zhao, Physical Review A, vol. 65, Issue 2
  19. ^ Abraham A. Ungar (2002), "Beyond the Einstein Addition Law and Its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces", Kluwer, ISBN 1-4020-0353-6, ISBN 978-1-4020-0353-0
  20. ^ Scott Walter, Foundations of Physics 32:327–330 (2002). A book review Archived 2025-08-05 at the Wayback Machine,

Further reading

[edit]
[edit]
世界之大无奇不有是什么意思 两个人能玩什么游戏 比目鱼又叫什么鱼 毛峰是什么茶 中唐筛查是检查什么
2月25号是什么星座 屁股疼是什么原因引起的 刚拔完智齿可以吃什么 守宫砂是什么 肠道功能紊乱吃什么药
常吃洋葱有什么好处 摸底是什么意思 考c1驾照需要什么条件 世界上最大的海是什么海 洋葱不能和什么食物一起吃
晚上看见刺猬预示什么 什么是气虚 家里停电打什么电话 哺乳期感冒吃什么药不影响哺乳 颈动脉斑块吃什么药
右边脸疼是什么原因hcv7jop6ns8r.cn 字母圈是什么意思xinjiangjialails.com 牛皮革是什么意思hcv9jop7ns1r.cn 四个自信是什么xianpinbao.com 痔疮看什么科hcv8jop2ns3r.cn
白羊座前面是什么星座hcv9jop2ns6r.cn 什么茶可以降血压wuhaiwuya.com 慈禧和溥仪是什么关系helloaicloud.com 梦到分手了是什么征兆hcv7jop4ns6r.cn 七月十八是什么日子hcv9jop2ns1r.cn
下加一笔是什么字hcv8jop1ns0r.cn 头上的旋有什么说法hcv9jop4ns9r.cn 无缘无故流鼻血是什么原因wmyky.com 七匹狼属于什么档次hcv9jop2ns8r.cn 孕妇喝什么补羊水最快hcv7jop9ns3r.cn
鱼吃什么hcv8jop1ns7r.cn 太原有什么特产hcv7jop4ns6r.cn 中秋节送什么好hcv8jop0ns6r.cn 小孩为什么会流鼻血hcv9jop3ns4r.cn 一个口一个者念什么hcv7jop9ns7r.cn
百度