大洋马是什么意思| 什么是射频| spank是什么意思| 慰问金是什么意思| 采字五行属什么| 思维方式是什么意思| 胆囊壁毛糙是什么意思| 什么叫袖珍人| 豆支念什么| 梦到自己快要死了是什么意思| 办身份证要穿什么衣服| 43岁属什么生肖| 灵芝煮水喝有什么功效| 短效避孕药什么牌子好| 查心电图挂什么科| 取环前需要做什么检查| 过期啤酒有什么用途| 生理盐水和食用盐水有什么区别| 乳酪是什么东西| 无缘无故头疼是什么原因| 胃立康片适合什么病| 跳票什么意思| c3是什么车型| 一什么三什么的成语| 甲状腺功能检查挂什么科| 水和什么相生| 性格内向的人适合做什么工作| 间作套种是什么意思| 北极和南极有什么区别| 反胃恶心吃什么药| 为什么会得手足口病| 女生肾虚是什么原因| 棉花糖是什么做的| 嗓子痛吃什么好| 甲状腺疾病有什么症状| 11月5号是什么星座| 理综是什么| 工作室是干什么的| 丰胸吃什么| 维生素c什么时候吃效果最好| 肾结水是什么原因造成的| 怀孕期间吃什么对胎儿发育好| 中午适合吃什么| 离子四项是检查什么的| 什么人不建议吃海参| 则字五行属什么| 异常子宫出血是什么原因| 为什么大医院不用宫腔镜人流| 乳酸杆菌阳性什么意思| ng是什么单位| 内膜有炎症什么症状| 低压高是什么引起的| 颌下淋巴结肿大吃什么药| 不是月经期出血是什么原因| 胬肉是什么意思| 亚米是什么意思| 耳朵里痒是什么原因| 老放臭屁是什么原因| 婴幼儿屁股红擦什么| 自缢什么意思| 冷鲜肉和新鲜肉有什么区别| 什么的竹叶| 一什么珍珠| 什么东西有助于睡眠| 处暑的含义是什么意思| 88岁属什么生肖| 天麻加什么治头晕| 橘白猫是什么品种| 什么是肾癌| 什么的角| 什么是跨境电商| 新西兰移民需要什么条件| 黑瞎子是什么动物| 陈慧琳属什么生肖| 肌肉型肥胖是什么意思| 社畜什么意思| 阳虚吃什么调理| 腊八有什么讲究| 黑曜石是什么| 后话是什么意思| 胃炎吃什么药| 拷贝是什么意思| 豫州是现在的什么地方| 吃什么东西| 为什么身体没力气也没有精神| 阴唇黑是什么原因| 2019是什么生肖| 知鸟是什么| 榴莲什么时间段吃最好| 真心话大冒险问什么| 倒立对身体有什么好处| 荔枝什么时候成熟季节| 编者按是什么| 金匮肾气丸主治什么病| 脂肪肝轻度是什么意思| 吗丁啉是什么药| 随波逐流什么意思| 神经性头痛吃什么药效果好| 妊娠高血压对胎儿有什么影响| 月经不来什么原因| 豆角是什么| 脑供血不足吃什么中成药好| 1972年属鼠的是什么命| 什么动物没有心脏| 什么是撤退性出血| 一什么睡莲| 生蚝吃了有什么好处| fwb是什么意思| 朝秦暮楚是什么意思| 马超是什么生肖| 梦见手链断了是什么意思| 胆囊壁毛糙吃什么药效果好| 两岁宝宝坐飞机需要什么证件| 什么是钙化点| 肚子胀屁多是什么原因| 蚂蚱喜欢吃什么| 什么原因引起耳石症| 备孕要注意些什么| 脂肪是什么组织| 质子是什么意思| bj什么意思| 卯木代表什么| 男人更年期吃什么药| 鲸属于什么类动物| 颈椎病吃什么药| 血糖高吃什么主食最好| 下架是什么意思| 男人结扎有什么好处| 洋生姜的功效与作用是什么| 喉咙痛可以吃什么| 无奇不有是什么意思| 检查乳腺挂什么科| 脂肪肝什么东西不能吃| 上午12点是什么时候| 小孩拉肚子吃什么食物好| 尖锐湿疣的症状是什么| 眼睛红血丝多是什么原因| 小腹右边疼是什么原因| 咽喉痒干咳吃什么药| 吃什么解油腻| 茜草别名又叫什么| 什么是生物钟| 人生苦短是什么意思| 梦见捡钱了是什么预兆| 夏天喝盐水有什么好处| 428是什么意思| 什么是溶液| 微信拉黑和删除有什么区别| 血氧低吃什么提高的快| 心脏做什么检查最准确| 监测是什么意思| 肝风是什么意思| 又拉又吐吃什么药| 7月3日是什么日子| hsv是什么病毒| 痣长在什么地方不好| 偶是什么意思| 鸡鸡长什么样| 黑豆有什么作用| 奔现是什么意思| 蓝光是什么| 领略是什么意思| 用甲硝唑栓有什么反应| 阁五行属什么| 十月是什么月| 虾皮是什么| 器质性疾病是什么意思| 什么属相不能养龙鱼| 月经咖啡色是什么原因| 月子早餐吃什么好| 屁股出血是什么原因| 尿痛是什么原因| 看破不说破什么意思| 皇汉是什么意思| 多发息肉是什么意思| 化学学什么| 肾结石不处理有什么后果| 痔疮是什么样的| 缩影是什么意思| idh是什么意思| 同房干涩什么原因导致的| 前纵韧带钙化是什么意思| 甘草配什么泡水喝最好| 冬至是什么意思| 121是什么意思| 十周年是什么婚| 亟须什么意思| 碧玉五行属什么| 手工diy是什么意思| 白细胞低是什么原因| 什么是脑梗| 梦到打死蛇是什么意思| 火烧是什么食物| 青少年腰疼是什么原因引起的| 食欲不振是什么原因| 睡觉时头晕是什么原因| 周围神经病是什么症状| 干咳无痰是什么原因| 外向是什么意思| latex是什么| 身上长疮是什么原因引起的| 什么样的人容易得抑郁症| psp是什么| 口加女念什么| 多吃香蕉有什么好处和坏处| 胃反酸吃什么食物好| 什么是龟头炎| 肩胛骨缝疼吃什么药| 什么是小苏打| 钻石王老五是什么意思| 女人有腰窝意味着什么| hvi是什么病| 犯太岁是什么意思啊| 什么一梦| 吃完饭就拉肚子是什么原因| 12月23日是什么星座| 丁丁历险记的狗是什么品种| 什么食物对肺有好处| 感冒为什么不能吃鸡蛋| 多囊卵巢综合症吃什么药| 什么叫稽留流产| 6月25日是什么星座| 抵抗力差吃什么可以增强抵抗力| 症结是什么意思| 嘴里苦是什么原因| 裙子搭配什么鞋子| 低压高用什么药| 什么样人穿棉麻好看| 痛风不能吃什么食物| 自闭是什么意思| 荷尔蒙是什么东西| 眼袋大是什么原因引起的| 梦见自己生了个女孩是什么意思| 酸橙绿是什么颜色| 梦见乌龟是什么意思| 阿米替林片是治什么病的| 什么的原野| 刘邦和刘秀是什么关系| bdp是什么意思| ABB式的词语有什么| 一代明君功千秋是什么生肖| 例假期间吃什么好| 珂字五行属什么| 胶原蛋白什么时候喝最好| 大红色配什么颜色好看| 总师是什么级别| 左腿发麻是什么原因| 高是什么意思| 梦魇是什么原因造成的| 解大便时有鲜血流出是什么原因| 天天睡觉做梦是什么原因| 荔枝晒干了叫什么| 寂静的意思是什么| 小孩子消化不好吃什么调理| 能说会道是什么生肖| 心肌缺血什么症状| 0型血和b型血生的孩子是什么血型| 顽固是什么意思| 不适是什么意思| 什么叫子宫肌瘤| 桑葚补什么| 刘备字什么| 脚面疼痛什么原因| 带状疱疹能吃什么| 百度Jump to content

微信沟通的当下 你有多久没登陆过QQ?

Checked
Page protected with pending changes
From Wikipedia, the free encyclopedia

Mitosis in the animal cell cycle (phases ordered counter-clockwise).
Mitosis divides the chromosomes in a cell nucleus.
Label-free live cell imaging of mesenchymal stem cells undergoing mitosis
Onion cells in different phases of the cell cycle enlarged 800 diameters.
a. non-dividing cells
b. nuclei preparing for division (spireme-stage)
c. dividing cells showing mitotic figures
e. pair of daughter-cells shortly after division

Mitosis (/ma??to?s?s/) is a part of the cell cycle in eukaryotic cells in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis is an equational division which gives rise to genetically identical cells in which the total number of chromosomes is maintained.[1] Mitosis is preceded by the S phase of interphase (during which DNA replication occurs) and is followed by telophase and cytokinesis, which divide the cytoplasm, organelles, and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components.[2] This process ensures that each daughter cell receives an identical set of chromosomes, maintaining genetic stability across cell generations. The different stages of mitosis altogether define the mitotic phase (M phase) of a cell cycle—the division of the mother cell into two daughter cells genetically identical to each other.[3]

The process of mitosis is divided into stages corresponding to the completion of one set of activities and the start of the next. These stages are preprophase (specific to plant cells), prophase, prometaphase, metaphase, anaphase, and telophase. During mitosis, the chromosomes, which have already duplicated during interphase, condense and attach to spindle fibers that pull one copy of each chromosome to opposite sides of the cell.[4] The result is two genetically identical daughter nuclei. The rest of the cell may then continue to divide by cytokinesis to produce two daughter cells.[5] The different phases of mitosis can be visualized in real time, using live cell imaging.[6]

An error in mitosis can result in the production of three or more daughter cells instead of the normal two. This is called tripolar mitosis and multipolar mitosis, respectively. These errors can be the cause of non-viable embryos that fail to implant.[7] Other errors during mitosis can induce mitotic catastrophe, apoptosis (programmed cell death) or cause mutations. Certain types of cancers can arise from such mutations.[8]

Mitosis varies between organisms.[9] For example, animal cells generally undergo an open mitosis, where the nuclear envelope breaks down before the chromosomes separate, whereas fungal cells generally undergo a closed mitosis, where chromosomes divide within an intact cell nucleus.[10][11] Most animal cells undergo a shape change, known as mitotic cell rounding, to adopt a near spherical morphology at the start of mitosis. Most human cells are produced by mitotic cell division. Important exceptions include the gametessperm and egg cells – which are produced by meiosis. Prokaryotes, bacteria and archaea which lack a true nucleus, divide by a different process called binary fission.[12]

Discovery

[edit]

Numerous descriptions of cell division were made during 18th and 19th centuries, with various degrees of accuracy.[13] In 1835, the German botanist Hugo von Mohl, described cell division in the green algae Cladophora glomerata, stating that multiplication of cells occurs through cell division.[14][15][16] In 1838, Matthias Jakob Schleiden affirmed that "formation of new cells in their interior was a general rule for cell multiplication in plants", a view later rejected in favour of Mohl's model, due to contributions of Robert Remak and others.[17]

In animal cells, cell division with mitosis was discovered in frog, rabbit, and cat cornea cells in 1873 and described for the first time by the Polish histologist Wac?aw Mayzel in 1875.[18][19]

Bütschli, Schneider and Fol might have also claimed the discovery of the process presently known as "mitosis".[13] In 1873, the German zoologist Otto Bütschli published data from observations on nematodes. A few years later, he discovered and described mitosis based on those observations.[20][21][22]

The term "mitosis", coined by Walther Flemming in 1882,[23] is derived from the Greek word μ?το? (mitos, "warp thread").[24][25] There are some alternative names for the process,[26] e.g., "karyokinesis" (nuclear division), a term introduced by Schleicher in 1878,[27][28] or "equational division", proposed by August Weismann in 1887.[29] However, the term "mitosis" is also used in a broad sense by some authors to refer to karyokinesis and cytokinesis together.[30] Presently, "equational division" is more commonly used to refer to meiosis II, the part of meiosis most like mitosis.[31]

Phases

[edit]

Overview

[edit]
Time-lapse video of mitosis in a Drosophila melanogaster embryo

The primary result of mitosis and cytokinesis is the transfer of a parent cell's genome into two daughter cells. The genome is composed of a number of chromosomes—complexes of tightly coiled DNA that contain genetic information vital for proper cell function.[32] Because each resultant daughter cell should be genetically identical to the parent cell, the parent cell must make a copy of each chromosome before mitosis. This occurs during the S phase of interphase.[33] Chromosome duplication results in two identical sister chromatids bound together by cohesin proteins at the centromere.

When mitosis begins, the chromosomes condense and become visible. In some eukaryotes, for example animals, the nuclear envelope, which segregates the DNA from the cytoplasm, disintegrates into small vesicles. The nucleolus, which makes ribosomes in the cell, also disappears. Microtubules project from opposite ends of the cell, attach to the centromeres, and align the chromosomes centrally within the cell. The microtubules then contract to pull the sister chromatids of each chromosome apart.[34] Sister chromatids at this point are called daughter chromosomes. As the cell elongates, corresponding daughter chromosomes are pulled toward opposite ends of the cell and condense maximally in late anaphase. A new nuclear envelope forms around each set of daughter chromosomes, which decondense to form interphase nuclei.

During mitotic progression, typically after the anaphase onset, the cell may undergo cytokinesis. In animal cells, a cell membrane pinches inward between the two developing nuclei to produce two new cells. In plant cells, a cell plate forms between the two nuclei. Cytokinesis does not always occur; coenocytic (a type of multinucleate condition) cells undergo mitosis without cytokinesis.

Diagram of interphase and the following five mitotic stages of the M phase including cytokinesis.

Interphase

[edit]

The interphase is a much longer phase of the cell cycle than the relatively short M phase. During interphase the cell prepares itself for the process of cell division. Interphase is divided into three subphases: G1 (first gap), S (synthesis), and G2 (second gap). During all three parts of interphase, the cell grows by producing proteins and cytoplasmic organelles. However, chromosomes are replicated only during the S phase. Thus, a cell grows (G1), continues to grow as it duplicates its chromosomes (S), grows more and prepares for mitosis (G2), and finally divides (M) before restarting the cycle.[33] All these phases in the cell cycle are highly regulated by cyclins, cyclin-dependent kinases, and other cell cycle proteins. The phases follow one another in strict order and there are cell cycle checkpoints that give the cell cues to proceed or not, from one phase to another.[35] Cells may also temporarily or permanently leave the cell cycle and enter G0 phase to stop dividing. This can occur when cells become overcrowded (density-dependent inhibition) or when they differentiate to carry out specific functions for the organism, as is the case for human heart muscle cells and neurons. Some G0 cells have the ability to re-enter the cell cycle.

DNA double-strand breaks can be repaired during interphase by two principal processes.[36] The first process, non-homologous end joining (NHEJ), can join the two broken ends of DNA in the G1, S and G2 phases of interphase. The second process, homologous recombinational repair (HRR), is more accurate than NHEJ in repairing double-strand breaks. HRR is active during the S and G2 phases of interphase when DNA replication is either partially accomplished or after it is completed, since HRR requires two adjacent homologs.

Interphase helps prepare the cell for mitotic division. It dictates whether the mitotic cell division will occur. It carefully stops the cell from proceeding whenever the cell's DNA is damaged or has not completed an important phase. The interphase is very important as it will determine if mitosis completes successfully. It will reduce the amount of damaged cells produced and the production of cancerous cells. A miscalculation by the key Interphase proteins could be crucial as the latter could potentially create cancerous cells.[37]

Mitosis

[edit]
Stages of early mitosis in a vertebrate cell with micrographs of chromatids

Preprophase (plant cells)

[edit]

In plant cells only, prophase is preceded by a preprophase stage. In highly vacuolated plant cells, the nucleus has to migrate into the center of the cell before mitosis can begin. This is achieved through the formation of a phragmosome, a transverse sheet of cytoplasm that bisects the cell along the future plane of cell division. In addition to phragmosome formation, preprophase is characterized by the formation of a ring of microtubules and actin filaments (called preprophase band) underneath the plasma membrane around the equatorial plane of the future mitotic spindle. This band marks the position where the cell will eventually divide. The cells of higher plants (such as the flowering plants) lack centrioles; instead, microtubules form a spindle on the surface of the nucleus and are then organized into a spindle by the chromosomes themselves, after the nuclear envelope breaks down.[38] The preprophase band disappears during nuclear envelope breakdown and spindle formation in prometaphase.[39]:?58–67?

Prophase

[edit]
Interphase nucleus (left), condensing chromosomes (middle) and condensed chromosomes (right)
Prophase during mitosis

During prophase, which occurs after G2 interphase, the cell prepares to divide by tightly condensing its chromosomes and initiating mitotic spindle formation. During interphase, the genetic material in the nucleus consists of loosely packed chromatin. At the onset of prophase, chromatin fibers condense into discrete chromosomes that are typically visible at high magnification through a light microscope. In this stage, chromosomes are long, thin, and thread-like. Each chromosome has two chromatids. The two chromatids are joined at the centromere.

Gene transcription ceases during prophase and does not resume until late anaphase to early G1 phase.[40][41][42] The nucleolus also disappears during early prophase.[43]

Close to the nucleus of an animal cell are structures called centrosomes, consisting of a pair of centrioles surrounded by a loose collection of proteins. The centrosome is the coordinating center for the cell's microtubules. A cell inherits a single centrosome at cell division, which is duplicated by the cell before a new round of mitosis begins, giving a pair of centrosomes. The two centrosomes polymerize tubulin to help form a microtubule spindle apparatus. Motor proteins then push the centrosomes along these microtubules to opposite sides of the cell. Although centrosomes help organize microtubule assembly, they are not essential for the formation of the spindle apparatus, since they are absent from plants,[38] and are not absolutely required for animal cell mitosis.[44]

Prometaphase

[edit]

At the beginning of prometaphase in animal cells, phosphorylation of nuclear lamins causes the nuclear envelope to disintegrate into small membrane vesicles. As this happens, microtubules invade the nuclear space. This is called open mitosis, and it occurs in some multicellular organisms. Fungi and some protists, such as algae or trichomonads, undergo a variation called closed mitosis where the spindle forms inside the nucleus, or the microtubules penetrate the intact nuclear envelope.[45][46]

In late prometaphase, kinetochore microtubules begin to search for and attach to chromosomal kinetochores.[47] A kinetochore is a proteinaceous microtubule-binding structure that forms on the chromosomal centromere during late prophase.[47][48] A number of polar microtubules find and interact with corresponding polar microtubules from the opposite centrosome to form the mitotic spindle.[49] Although the kinetochore structure and function are not fully understood, it is known that it contains some form of molecular motor.[50] When a microtubule connects with the kinetochore, the motor activates, using energy from ATP to "crawl" up the tube toward the originating centrosome. This motor activity, coupled with polymerisation and depolymerisation of microtubules, provides the pulling force necessary to later separate the chromosome's two chromatids.[50]

Metaphase

[edit]
A cell in late metaphase. All chromosomes (blue) but one have arrived at the metaphase plate.
Metaphase during mitosis

After the microtubules have located and attached to the kinetochores in prometaphase, the two centrosomes begin pulling the chromosomes towards opposite ends of the cell. The resulting tension causes the chromosomes to align along the metaphase plate at the equatorial plane, an imaginary line that is centrally located between the two centrosomes (at approximately the midline of the cell).[49] To ensure equitable distribution of chromosomes at the end of mitosis, the metaphase checkpoint guarantees that kinetochores are properly attached to the mitotic spindle and that the chromosomes are aligned along the metaphase plate.[51] If the cell successfully passes through the metaphase checkpoint, it proceeds to anaphase.

Anaphase

[edit]
Anaphase during mitosis

During anaphase A, the cohesins that bind sister chromatids together are cleaved, forming two identical daughter chromosomes.[52] Shortening of the kinetochore microtubules pulls the newly formed daughter chromosomes to opposite ends of the cell. During anaphase B, polar microtubules push against each other, causing the cell to elongate.[53] In late anaphase, chromosomes also reach their overall maximal condensation level, to help chromosome segregation and the re-formation of the nucleus.[54] In most animal cells, anaphase A precedes anaphase B, but some vertebrate egg cells demonstrate the opposite order of events.[52]

Telophase

[edit]
Telophase during mitosis

Telophase (from the Greek word τελο? meaning "end") is a reversal of prophase and prometaphase events. At telophase, the polar microtubules continue to lengthen, elongating the cell even more. If the nuclear envelope has broken down, a new nuclear envelope forms using the membrane vesicles of the parent cell's old nuclear envelope. The new envelope forms around each set of separated daughter chromosomes (though the membrane does not enclose the centrosomes) and the nucleolus reappears. Both sets of chromosomes, now surrounded by new nuclear membrane, begin to "relax" or decondense. Mitosis is complete. Each daughter nucleus has an identical set of chromosomes. Cell division may or may not occur at this time depending on the organism.

Cytokinesis

[edit]
Cytokinesis illustration
Ciliate undergoing cytokinesis, with the cleavage furrow being clearly visible

Cytokinesis is not a phase of mitosis, but rather a separate process necessary for completing cell division. In animal cells, a cleavage furrow (pinch) containing a contractile ring, develops where the metaphase plate used to be, pinching off the separated nuclei.[55] In both animal and plant cells, cell division is also driven by vesicles derived from the Golgi apparatus, which move along microtubules to the middle of the cell.[56] In plants, this structure coalesces into a cell plate at the center of the phragmoplast and develops into a cell wall, separating the two nuclei. The phragmoplast is a microtubule structure typical for higher plants, whereas some green algae use a phycoplast microtubule array during cytokinesis.[39]:?64–7,?328–9? Each daughter cell has a complete copy of the genome of its parent cell. The end of cytokinesis marks the end of the M-phase.

There are many cells where mitosis and cytokinesis occur separately, forming single cells with multiple nuclei. The most notable occurrence of this is among the fungi, slime molds, and coenocytic algae, but the phenomenon is found in various other organisms. Even in animals, cytokinesis and mitosis may occur independently, for instance during certain stages of fruit fly embryonic development.[57]

Function

[edit]

The function or significance of mitosis, is the maintenance of the chromosomal set; each formed cell receives chromosomes that are alike in composition and equal in number to the chromosomes of the parent cell.

Mitosis occurs in the following circumstances:

  • Development and growth: The number of cells within an organism increases by mitosis. This is the basis of the development of a multicellular body from a single cell, i.e., zygote and also the basis of the growth of a multicellular body.
  • Cell replacement: In some parts of the body, e.g. skin and digestive tract, cells are constantly sloughed off and replaced by new ones.[58] New cells are formed by mitosis and so are exact copies of the cells being replaced. In like manner, red blood cells have a short lifespan (only about 3 months) and new RBCs are formed by mitosis.[59]
  • Regeneration: Some organisms can regenerate body parts. The production of new cells in such instances is achieved by mitosis. For example, starfish regenerate lost arms through mitosis.
  • Asexual reproduction: Some organisms produce genetically similar offspring through asexual reproduction. For example, the hydra reproduces asexually by budding. The cells at the surface of hydra undergo mitosis and form a mass called a bud. Mitosis continues in the cells of the bud and this grows into a new individual. The same division happens during asexual reproduction or vegetative propagation in plants.

Variations

[edit]

Forms of mitosis

[edit]

The mitosis process in the cells of eukaryotic organisms follows a similar pattern, but with variations in three main details. "Closed" and "open" mitosis can be distinguished on the basis of nuclear envelope remaining intact or breaking down. An intermediate form with partial degradation of the nuclear envelope is called "semiopen" mitosis. With respect to the symmetry of the spindle apparatus during metaphase, an approximately axially symmetric (centered) shape is called "orthomitosis", distinguished from the eccentric spindles of "pleuromitosis", in which mitotic apparatus has bilateral symmetry. Finally, a third criterion is the location of the central spindle in case of closed pleuromitosis: "extranuclear" (spindle located in the cytoplasm) or "intranuclear" (in the nucleus).[9]

Nuclear division takes place only in cells of organisms of the eukaryotic domain, as bacteria and archaea have no nucleus. Bacteria and archaea undergo a different type of division.[60][61] Within each of the eukaryotic supergroups, mitosis of the open form can be found, as well as closed mitosis, except for unicellular Excavata, which show exclusively closed mitosis.[62] Following, the occurrence of the forms of mitosis in eukaryotes:[9][63]

Errors and other variations

[edit]
An abnormal (tripolar) mitosis (12 o'clock position) in a precancerous lesion of the stomach (H&E stain)

Errors can occur during mitosis, especially during early embryonic development in humans.[64] During each step of mitosis, there are normally checkpoints as well that control the normal outcome of mitosis.[65] But, occasionally to almost rarely, mistakes will happen. Mitotic errors can create aneuploid cells that have too few or too many of one or more chromosomes, a condition associated with cancer.[66][67] Early human embryos, cancer cells, infected or intoxicated cells can also suffer from pathological division into three or more daughter cells (tripolar or multipolar mitosis), resulting in severe errors in their chromosomal complements.[7]

In nondisjunction, sister chromatids fail to separate during anaphase.[68] One daughter cell receives both sister chromatids from the nondisjoining chromosome and the other cell receives none. As a result, the former cell gets three copies of the chromosome, a condition known as trisomy, and the latter will have only one copy, a condition known as monosomy. On occasion, when cells experience nondisjunction, they fail to complete cytokinesis and retain both nuclei in one cell, resulting in binucleated cells.[69]

Anaphase lag occurs when the movement of one chromatid is impeded during anaphase.[68] This may be caused by a failure of the mitotic spindle to properly attach to the chromosome. The lagging chromatid is excluded from both nuclei and is lost. Therefore, one of the daughter cells will be monosomic for that chromosome.

Endoreduplication (or endoreplication) occurs when chromosomes duplicate but the cell does not subsequently divide. This results in polyploid cells or, if the chromosomes duplicates repeatedly, polytene chromosomes.[68][70] Endoreduplication is found in many species and appears to be a normal part of development.[70] Endomitosis is a variant of endoreduplication in which cells replicate their chromosomes during S phase and enter, but prematurely terminate, mitosis. Instead of being divided into two new daughter nuclei, the replicated chromosomes are retained within the original nucleus.[57][71] The cells then re-enter G1 and S phase and replicate their chromosomes again.[71] This may occur multiple times, increasing the chromosome number with each round of replication and endomitosis. Platelet-producing megakaryocytes go through endomitosis during cell differentiation.[72][73]

Amitosis in ciliates and in animal placental tissues results in a random distribution of parental alleles.

Karyokinesis without cytokinesis originates multinucleated cells called coenocytes.

Diagnostic marker

[edit]
Mitosis appearances in breast cancer

In histopathology, the mitosis rate (mitotic count or mitotic index) is an important parameter in various types of tissue samples, for diagnosis as well as to further specify the aggressiveness of tumors. For example, there is routinely a quantification of mitotic count in breast cancer classification.[74] The mitoses must be counted in an area of the highest mitotic activity. Visually identifying these areas, is difficult in tumors with very high mitotic activity.[75] Also, the detection of atypical forms of mitosis can be used both as a diagnostic and prognostic marker.[citation needed] For example, lag-type mitosis (non-attached condensed chromatin in the area of the mitotic figure) indicates high risk human papillomavirus infection-related cervical cancer.[citation needed] In order to improve the reproducibility and accuracy of the mitotic count, automated image analysis using deep learning-based algorithms have been proposed.[76] However, further research is needed before those algorithms can be used to routine diagnostics.

[edit]

Cell rounding

[edit]
Cell shape changes through mitosis for a typical animal cell cultured on a flat surface. The cell undergoes mitotic cell rounding during spindle assembly and then divides via cytokinesis. The actomyosin cortex is depicted in red, DNA/chromosomes purple, microtubules green, and membrane and retraction fibers in black. Rounding also occurs in live tissue, as described in the text.

In animal tissue, most cells round up to a near-spherical shape during mitosis.[77][78][79] In epithelia and epidermis, an efficient rounding process is correlated with proper mitotic spindle alignment and subsequent correct positioning of daughter cells.[78][79][80][81] Moreover, researchers have found that if rounding is heavily suppressed it may result in spindle defects, primarily pole splitting and failure to efficiently capture chromosomes.[82] Therefore, mitotic cell rounding is thought to play a protective role in ensuring accurate mitosis.[81][83]

Rounding forces are driven by reorganization of F-actin and myosin (actomyosin) into a contractile homogeneous cell cortex that 1) rigidifies the cell periphery[83][84][85] and 2) facilitates generation of intracellular hydrostatic pressure (up to 10 fold higher than interphase).[86][87][88] The generation of intracellular pressure is particularly critical under confinement, such as would be important in a tissue scenario, where outward forces must be produced to round up against surrounding cells and/or the extracellular matrix. Generation of pressure is dependent on formin-mediated F-actin nucleation[88] and Rho kinase (ROCK)-mediated myosin II contraction,[84][86][88] both of which are governed upstream by signaling pathways RhoA and ECT2[84][85] through the activity of Cdk1.[88] Due to its importance in mitosis, the molecular components and dynamics of the mitotic actomyosin cortex is an area of active research.

Mitotic recombination

[edit]

Mitotic cells irradiated with X-rays in the G1 phase of the cell cycle repair recombinogenic DNA damages primarily by recombination between homologous chromosomes.[89] Mitotic cells irradiated in the G2 phase repair such damages preferentially by sister-chromatid recombination.[89] Mutations in genes encoding enzymes employed in recombination cause cells to have increased sensitivity to being killed by a variety of DNA damaging agents.[90][91][92] These findings suggest that mitotic recombination is an adaptation for repairing DNA damages including those that are potentially lethal.

Evolution

[edit]
Mitosis and meiosis differences
Some types of cell division in prokaryotes and eukaryotes

There are prokaryotic homologs of all the key molecules of eukaryotic mitosis (e.g., actins, tubulins). Being a universal eukaryotic property, mitosis probably arose at the base of the eukaryotic tree. As mitosis is less complex than meiosis, meiosis may have arisen after mitosis.[93] However, sexual reproduction involving meiosis is also a primitive characteristic of eukaryotes.[94] Thus meiosis and mitosis may both have evolved, in parallel, from ancestral prokaryotic processes.

While in bacterial cell division, after duplication of DNA, two circular chromosomes are attached to a special region of the cell membrane, eukaryotic mitosis is usually characterized by the presence of many linear chromosomes, whose kinetochores attaches to the microtubules of the spindle. In relation to the forms of mitosis, closed intranuclear pleuromitosis seems to be the most primitive type, as it is more similar to bacterial division.[9]

[edit]

Mitotic cells can be visualized microscopically by staining them with fluorescent antibodies and dyes.

See also

[edit]

References

[edit]
  1. ^ "Cell division and growth". britannica.com. ENCYCLOP?DIA BRITANNICA. Archived from the original on 2025-08-04. Retrieved 2025-08-04.
  2. ^ Carter JS (2025-08-04). "Mitosis". biology.clc.uc.edu. Archived from the original on 2025-08-04. Retrieved 2025-08-04.
  3. ^ Figel, Sheila; Fenstermaker, Robert A. (2018). "Cell-Cycle Regulation". Handbook of Brain Tumor Chemotherapy, Molecular Therapeutics, and Immunotherapy. pp. 257–269. doi:10.1016/B978-0-12-812100-9.00018-8. ISBN 978-0-12-812100-9.
  4. ^ "Cell Division: Stages of Mitosis | Learn Science at Scitable". www.nature.com. Archived from the original on 2025-08-04. Retrieved 2025-08-04.
  5. ^ Maton A, Hopkins JJ, LaHart S, Quon Warner D, Wright M, Jill D (1997). Cells: Building Blocks of Life. New Jersey: Prentice Hall. pp. 70–4. ISBN 978-0-13-423476-2.
  6. ^ Sandoz PA (December 2019). "Image-based analysis of living mammalian cells using label-free 3D refractive index maps reveals new organelle dynamics and dry mass flux". PLOS Biology. 17 (12): e3000553. doi:10.1371/journal.pbio.3000553. PMC 6922317. PMID 31856161.
  7. ^ a b Kalatova B, Jesenska R, Hlinka D, Dudas M (January 2015). "Tripolar mitosis in human cells and embryos: occurrence, pathophysiology and medical implications". Acta Histochemica. 117 (1): 111–25. doi:10.1016/j.acthis.2014.11.009. PMID 25554607.
  8. ^ Kops GJ, Weaver BA, Cleveland DW (October 2005). "On the road to cancer: aneuploidy and the mitotic checkpoint". Nature Reviews. Cancer. 5 (10): 773–85. doi:10.1038/nrc1714. PMID 16195750.
  9. ^ a b c d Raikov IB (1994). "The diversity of forms of mitosis in protozoa: A comparative review". European Journal of Protistology. 30 (3): 253–69. doi:10.1016/S0932-4739(11)80072-6.
  10. ^ De Souza CP, Osmani SA (September 2007). "Mitosis, not just open or closed". Eukaryotic Cell. 6 (9): 1521–7. doi:10.1128/EC.00178-07. PMC 2043359. PMID 17660363.
  11. ^ Boettcher B, Barral Y (2013). "The cell biology of open and closed mitosis". Nucleus. 4 (3): 160–5. doi:10.4161/nucl.24676. PMC 3720745. PMID 23644379.
  12. ^ Patil, C. s. Cell Biology. APH Publishing. ISBN 978-81-313-0416-7.
  13. ^ a b Ross, Anna E. "Human Anatomy & Physiology I: A Chronology of the Description of Mitosis". Christian Brothers University. Retrieved 02 May 2018. link Archived 2025-08-04 at the Wayback Machine.
  14. ^ von Mohl H (1835). Ueber die Vermehrung der Pflanzenzellen durch Theilung. Inaugural-Dissertation (Thesis). Tübingen.
  15. ^ Karl M?gdefrau (1994). "Mohl, Hugo von". Neue Deutsche Biographie (in German). Vol. 17. Berlin: Duncker & Humblot. pp. 690–691. (full text online).
  16. ^ "Notes and memoranda: The late professor von Mohl". Quarterly Journal of Microscopical Science, v. XV, New Series, p. 178–181, 1875. link.
  17. ^ Weyers, Wolfgang (30 April 2018). "Screening for malignant melanoma—a critical assessment in historical perspective". Dermatology Practical & Conceptual. 8 (2): 89–103. doi:10.5826/dpc.0802a06. PMC 5955075. PMID 29785325.
  18. ^ Komender J (2008). "Kilka s?ów o doktorze Wac?awie Mayzlu i jego odkryciu" [On Waclaw Mayzel and his observation of mitotic division] (PDF). Post?py Biologii Komórki (in Polish). 35 (3): 405–407. Archived (PDF) from the original on 2025-08-04.
  19. ^ I?owiecki M (1981). Dzieje nauki polskiej. Warszawa: Wydawnictwo Interpress. p. 187. ISBN 978-83-223-1876-8.
  20. ^ Bütschli, O. (1873). Beitr?ge zur Kenntnis der freilebenden Nematoden. Nova Acta der Kaiserlich Leopoldinisch-Carolinischen Deutschen Akademie der Naturforscher 36, 1–144. link Archived 2025-08-04 at the Wayback Machine.
  21. ^ Bütschli, O. (1876). Studien über die ersten Entwicklungsvorg?nge der Eizelle, die Zelleilung und die Conjugation der Infusorien. Abh.d. Senckenb. Naturf. Ges. Frankfurt a. M. 10, 213–452. link Archived 2025-08-04 at the Wayback Machine.
  22. ^ Fokin SI (2013). "Otto Bütschli (1848–1920) Where we will genuflect?" (PDF). Protistology. 8 (1): 22–35. Archived (PDF) from the original on 2025-08-04. Retrieved 2025-08-04.
  23. ^ Sharp LW (1921). Introduction To Cytology. New York: McGraw Hill Book Company Inc. p. 143.
  24. ^ "mitosis". Online Etymology Dictionary. Archived from the original on 2025-08-04. Retrieved 2025-08-04.
  25. ^ μ?το?. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project
  26. ^ Battaglia E (2009). "Caryoneme alternative to chromosome and a new caryological nomenclature" (PDF). Caryologia. 62 (4): 1–80. Archived from the original (PDF) on 2025-08-04.
  27. ^ Schleicher W (1878). "Die Knorpelzelltheilung". Arch. Mirkroskop. Anat. 16: 248–300. doi:10.1007/BF02956384. Archived from the original on 2025-08-04.
  28. ^ Toepfer G. "Karyokinesis". BioConcepts. Archived from the original on 2025-08-04. Retrieved 2 May 2018.
  29. ^ Battaglia E (1987). "Embryological questions: 12. Have the Polygonum and Allium types been rightly established?". Ann Bot. 45. Rome: 81–117. p. 85: Already in 1887, Weismann gave the names Aequationstheilung to the usual cell division, and Reduktionstheilungen to the two divisions involved in the halving process of the number of Kernsegmente
  30. ^ Mauseth JD (1991). Botany: an Introduction to Plant Biology. Philadelphia: Saunders College Publishing. ISBN 9780030302220. p. 102: Cell division is cytokinesis, and nuclear division is karyokinesis. The words "mitosis" and "meiosis" technically refer only to karyokinesis but are frequently used to describe cytokinesis as well.
  31. ^ Cooper, Geoffrey M. (2000). "Meiosis and Fertilization". The Cell: A Molecular Approach. 2nd Edition.
  32. ^ Brown, Terence A. (2002). "The Human Genome". Genomes (2nd ed.). Wiley-Liss.
  33. ^ a b Blow JJ, Tanaka TU (November 2005). "The chromosome cycle: coordinating replication and segregation. Second in the cycles review series". EMBO Reports. 6 (11): 1028–34. doi:10.1038/sj.embor.7400557. PMC 1371039. PMID 16264427.
  34. ^ Zhou J, Yao J, Joshi HC (September 2002). "Attachment and tension in the spindle assembly checkpoint". Journal of Cell Science. 115 (Pt 18): 3547–55. doi:10.1242/jcs.00029. PMID 12186941.
  35. ^ Biology Online (28 April 2020). "Mitosis". Biology Online.
  36. ^ Shibata A (2017). "Regulation of repair pathway choice at two-ended DNA double-strand breaks". Mutat Res. 803–805: 51–55. Bibcode:2017MRFMM.803...51S. doi:10.1016/j.mrfmmm.2017.07.011. PMID 28781144.
  37. ^ Bernat, R L; Borisy, G G; Rothfield, N F; Earnshaw, W C (October 1990). "Injection of anticentromere antibodies in interphase disrupts events required for chromosome movement at mitosis". The Journal of Cell Biology. 111 (4): 1519–1533. doi:10.1083/jcb.111.4.1519. PMC 2116233. PMID 2211824.
  38. ^ a b Lloyd C, Chan J (February 2006). "Not so divided: the common basis of plant and animal cell division". Nature Reviews. Molecular Cell Biology. 7 (2): 147–52. doi:10.1038/nrm1831. PMID 16493420.
  39. ^ a b Raven PH, Evert RF, Eichhorn SE (2005). Biology of Plants (7th ed.). New York: W. H. Freeman and Co. ISBN 978-0716710073.
  40. ^ Prasanth KV, Sacco-Bubulya PA, Prasanth SG, Spector DL (March 2003). "Sequential entry of components of the gene expression machinery into daughter nuclei". Molecular Biology of the Cell. 14 (3): 1043–57. doi:10.1091/mbc.E02-10-0669. PMC 151578. PMID 12631722.
  41. ^ Kadauke S, Blobel GA (April 2013). "Mitotic bookmarking by transcription factors". Epigenetics & Chromatin. 6 (1): 6. doi:10.1186/1756-8935-6-6. PMC 3621617. PMID 23547918.
  42. ^ Prescott DM, Bender MA (March 1962). "Synthesis of RNA and protein during mitosis in mammalian tissue culture cells". Experimental Cell Research. 26 (2): 260–8. doi:10.1016/0014-4827(62)90176-3. PMID 14488623.
  43. ^ Olson MO (2011). The Nucleolus. Vol. 15 of Protein Reviews. Berlin: Springer Science & Business Media. p. 15. ISBN 9781461405146.
  44. ^ Basto R, Lau J, Vinogradova T, Gardiol A, Woods CG, Khodjakov A, Raff JW (June 2006). "Flies without centrioles". Cell. 125 (7): 1375–86. doi:10.1016/j.cell.2006.05.025. PMID 16814722.
  45. ^ Heywood P (June 1978). "Ultrastructure of mitosis in the chloromonadophycean alga Vacuolaria virescens". Journal of Cell Science. 31: 37–51. doi:10.1242/jcs.31.1.37. PMID 670329.
  46. ^ Ribeiro KC, Pereira-Neves A, Benchimol M (June 2002). "The mitotic spindle and associated membranes in the closed mitosis of trichomonads". Biology of the Cell. 94 (3): 157–72. doi:10.1016/S0248-4900(02)01191-7. PMID 12206655.
  47. ^ a b Chan GK, Liu ST, Yen TJ (November 2005). "Kinetochore structure and function". Trends in Cell Biology. 15 (11): 589–98. doi:10.1016/j.tcb.2005.09.010. PMID 16214339.
  48. ^ Cheeseman IM, Desai A (January 2008). "Molecular architecture of the kinetochore-microtubule interface". Nature Reviews. Molecular Cell Biology. 9 (1): 33–46. doi:10.1038/nrm2310. PMID 18097444.
  49. ^ a b Winey M, Mamay CL, O'Toole ET, Mastronarde DN, Giddings TH, McDonald KL, McIntosh JR (June 1995). "Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle". The Journal of Cell Biology. 129 (6): 1601–15. doi:10.1083/jcb.129.6.1601. PMC 2291174. PMID 7790357.
  50. ^ a b Maiato H, DeLuca J, Salmon ED, Earnshaw WC (November 2004). "The dynamic kinetochore-microtubule interface". Journal of Cell Science. 117 (Pt 23): 5461–77. doi:10.1242/jcs.01536. hdl:10216/35050. PMID 15509863.
  51. ^ Chan GK, Yen TJ (2003). "The mitotic checkpoint: a signaling pathway that allows a single unattached kinetochore to inhibit mitotic exit". Progress in Cell Cycle Research. 5: 431–9. PMID 14593737.
  52. ^ a b FitzHarris G (March 2012). "Anaphase B precedes anaphase A in the mouse egg". Current Biology. 22 (5): 437–44. Bibcode:2012CBio...22..437F. doi:10.1016/j.cub.2012.01.041. PMID 22342753.
  53. ^ Miller KR, Levine J (2000). "Anaphase". Biology (5th ed.). Pearson Prentice Hall. pp. 169–70. ISBN 978-0-13-436265-6.
  54. ^ "Researchers Shed Light On Shrinking Of Chromosomes". ScienceDaily (Press release). European Molecular Biology Laboratory. 12 June 2007.
  55. ^ Glotzer M (March 2005). "The molecular requirements for cytokinesis". Science. 307 (5716): 1735–9. Bibcode:2005Sci...307.1735G. doi:10.1126/science.1096896. PMID 15774750.
  56. ^ Albertson R, Riggs B, Sullivan W (February 2005). "Membrane traffic: a driving force in cytokinesis". Trends in Cell Biology. 15 (2): 92–101. doi:10.1016/j.tcb.2004.12.008. PMID 15695096.
  57. ^ a b Lilly MA, Duronio RJ (April 2005). "New insights into cell cycle control from the Drosophila endocycle". Oncogene. 24 (17): 2765–75. doi:10.1038/sj.onc.1208610. PMID 15838513.
  58. ^ Sunderland (2000). The Cell: A Molecular Approach. 2nd edition (2nd ed.). Sinauer Associates.
  59. ^ Franco, Robert (27 August 2012). "Measurement of Red Cell Lifespan and Aging". Transfusion Medicine and Hemotherapy. 39 (5): 302–307. doi:10.1159/000342232. PMC 3678251. PMID 23801920.
  60. ^ Hogan (August 23, 2011). "Archaea". Encyclopedia of Life.
  61. ^ "Binary Fission and other Forms of Reproduction in Bacteria". Cornell College of Agriculture and Life Sciences.
  62. ^ Boettcher B, Barral Y (2013). "The cell biology of open and closed mitosis". Nucleus. 4 (3): 160–5. doi:10.4161/nucl.24676. PMC 3720745. PMID 23644379.
  63. ^ R. Desalle, B. Schierwater: Key Transitions in Animal Evolution. CRC Press, 2010, p. 12, link Archived 2025-08-04 at the Wayback Machine.
  64. ^ Mantikou E, Wong KM, Repping S, Mastenbroek S (December 2012). "Molecular origin of mitotic aneuploidies in preimplantation embryos". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1822 (12): 1921–30. doi:10.1016/j.bbadis.2012.06.013. PMID 22771499.
  65. ^ Wassmann, Katja; Benezra, Robert (February 2001). "Mitotic checkpoints: from yeast to cancer". Current Opinion in Genetics & Development. 11 (1): 83–90. doi:10.1016/S0959-437X(00)00161-1. PMID 11163156.
  66. ^ Draviam VM, Xie S, Sorger PK (April 2004). "Chromosome segregation and genomic stability". Current Opinion in Genetics & Development. 14 (2): 120–5. doi:10.1016/j.gde.2004.02.007. PMID 15196457.
  67. ^ Santaguida S, Amon A (August 2015). "Short- and long-term effects of chromosome mis-segregation and aneuploidy". Nature Reviews. Molecular Cell Biology. 16 (8): 473–85. doi:10.1038/nrm4025. hdl:1721.1/117201. PMID 26204159.
  68. ^ a b c Iourov IY, Vorsanova SG, Yurov YB (2006). "Chromosomal Variations in Mammalian Neuronal Cells: Known Facts and Attractive Hypotheses". In Jeon KJ (ed.). International Review Of Cytology: A Survey of Cell Biology. Vol. 249. Waltham, MA: Academic Press. p. 146. ISBN 9780080463506.
  69. ^ Shi Q, King RW (October 2005). "Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines". Nature. 437 (7061): 1038–42. Bibcode:2005Natur.437.1038S. doi:10.1038/nature03958. PMID 16222248.
  70. ^ a b Edgar BA, Orr-Weaver TL (May 2001). "Endoreplication cell cycles: more for less". Cell. 105 (3): 297–306. doi:10.1016/S0092-8674(01)00334-8. PMID 11348589.
  71. ^ a b Lee HO, Davidson JM, Duronio RJ (November 2009). "Endoreplication: polyploidy with purpose". Genes & Development. 23 (21): 2461–77. doi:10.1101/gad.1829209. PMC 2779750. PMID 19884253.
  72. ^ Italiano JE, Shivdasani RA (June 2003). "Megakaryocytes and beyond: the birth of platelets". Journal of Thrombosis and Haemostasis. 1 (6): 1174–82. doi:10.1046/j.1538-7836.2003.00290.x. PMID 12871316.
  73. ^ Vitrat N, Cohen-Solal K, Pique C, Le Couedic JP, Norol F, Larsen AK, Katz A, Vainchenker W, Debili N (May 1998). "Endomitosis of human megakaryocytes are due to abortive mitosis". Blood. 91 (10): 3711–23. doi:10.1182/blood.V91.10.3711. PMID 9573008.
  74. ^ "Infiltrating Ductal Carcinoma of the Breast (Carcinoma of No Special Type)". Stanford University School of Medicine. Archived from the original on 2025-08-04. Retrieved 2025-08-04.
  75. ^ Bertram CA, Aubreville M, Gurtner C, Bartel A, Corner SM, Dettwiler M, et al. (March 2020). "Computerized Calculation of Mitotic Count Distribution in Canine Cutaneous Mast Cell Tumor Sections: Mitotic Count Is Area Dependent". Veterinary Pathology. 57 (2): 214–226. doi:10.1177/0300985819890686. PMID 31808382.
  76. ^ Bertram, Christof A; Aubreville, Marc; Donovan, Taryn A; Bartel, Alexander; Wilm, Frauke; Marzahl, Christian; Assenmacher, Charles-Antoine; Becker, Kathrin; Bennett, Mark; Corner, Sarah; Cossic, Brieuc; Denk, Daniela; Dettwiler, Martina; Gonzalez, Beatriz Garcia; Gurtner, Corinne; Haverkamp, Ann-Kathrin; Heier, Annabelle; Lehmbecker, Annika; Merz, Sophie; Noland, Erika L; Plog, Stephanie; Schmidt, Anja; Sebastian, Franziska; Sledge, Dodd G; Smedley, Rebecca C; Tecilla, Marco; Thaiwong, Tuddow; Fuchs-Baumgartinger, Andrea; Meuten, Donald J; Breininger, Katharina; Kiupel, Matti; Maier, Andreas; Klopfleisch, Robert (2021). "Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy". Veterinary Pathology. 59 (2): 211–226. doi:10.1177/03009858211067478. PMC 8928234. PMID 34965805.
  77. ^ Sauer FC (1935). "Mitosis in the neural tube". Journal of Comparative Neurology. 62 (2): 377–405. doi:10.1002/cne.900620207.
  78. ^ a b Meyer EJ, Ikmi A, Gibson MC (March 2011). "Interkinetic nuclear migration is a broadly conserved feature of cell division in pseudostratified epithelia". Current Biology. 21 (6): 485–91. Bibcode:2011CBio...21..485M. doi:10.1016/j.cub.2011.02.002. PMID 21376598.
  79. ^ a b Luxenburg C, Pasolli HA, Williams SE, Fuchs E (March 2011). "Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation". Nature Cell Biology. 13 (3): 203–14. doi:10.1038/Ncb2163. PMC 3278337. PMID 21336301.
  80. ^ Nakajima Y, Meyer EJ, Kroesen A, McKinney SA, Gibson MC (August 2013). "Epithelial junctions maintain tissue architecture by directing planar spindle orientation". Nature. 500 (7462): 359–62. Bibcode:2013Natur.500..359N. doi:10.1038/nature12335. PMID 23873041.
  81. ^ a b Cadart C, Zlotek-Zlotkiewicz E, Le Berre M, Piel M, Matthews HK (April 2014). "Exploring the function of cell shape and size during mitosis". Developmental Cell. 29 (2): 159–69. doi:10.1016/j.devcel.2014.04.009. PMID 24780736.
  82. ^ Lancaster OM, Le Berre M, Dimitracopoulos A, Bonazzi D, Zlotek-Zlotkiewicz E, Picone R, Duke T, Piel M, Baum B (May 2013). "Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation". Developmental Cell. 25 (3): 270–83. doi:10.1016/j.devcel.2013.03.014. PMID 23623611.
  83. ^ a b Lancaster OM, Baum B (October 2014). "Shaping up to divide: coordinating actin and microtubule cytoskeletal remodelling during mitosis". Seminars in Cell & Developmental Biology. 34: 109–15. doi:10.1016/j.semcdb.2014.02.015. PMID 24607328.
  84. ^ a b c Maddox AS, Burridge K (January 2003). "RhoA is required for cortical retraction and rigidity during mitotic cell rounding". The Journal of Cell Biology. 160 (2): 255–65. doi:10.1083/jcb.200207130. PMC 2172639. PMID 12538643.
  85. ^ a b Matthews HK, Delabre U, Rohn JL, Guck J, Kunda P, Baum B (August 2012). "Changes in Ect2 localization couple actomyosin-dependent cell shape changes to mitotic progression". Developmental Cell. 23 (2): 371–83. doi:10.1016/j.devcel.2012.06.003. PMC 3763371. PMID 22898780.
  86. ^ a b Stewart MP, Helenius J, Toyoda Y, Ramanathan SP, Muller DJ, Hyman AA (January 2011). "Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding". Nature. 469 (7329): 226–30. Bibcode:2011Natur.469..226S. doi:10.1038/nature09642. PMID 21196934.
  87. ^ Fischer-Friedrich E, Hyman AA, Jülicher F, Müller DJ, Helenius J (August 2014). "Quantification of surface tension and internal pressure generated by single mitotic cells". Scientific Reports. 4 (6213): 6213. Bibcode:2014NatSR...4.6213F. doi:10.1038/srep06213. PMC 4148660. PMID 25169063.
  88. ^ a b c d Ramanathan SP, Helenius J, Stewart MP, Cattin CJ, Hyman AA, Muller DJ (February 2015). "Cdk1-dependent mitotic enrichment of cortical myosin II promotes cell rounding against confinement". Nature Cell Biology. 17 (2): 148–59. doi:10.1038/ncb3098. PMID 25621953.
  89. ^ a b Kadyk LC, Hartwell LH (October 1992). "Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae". Genetics. 132 (2): 387–402. doi:10.1093/genetics/132.2.387. PMC 1205144. PMID 1427035.
  90. ^ Botthof JG, Bielczyk-Maczyńska E, Ferreira L, Cvejic A (May 2017). "rad51 leads to Fanconi anemia-like symptoms in zebrafish". Proceedings of the National Academy of Sciences of the United States of America. 114 (22): E4452 – E4461. doi:10.1073/pnas.1620631114. PMC 5465903. PMID 28512217. Here we provide in vivo evidence that the decrease in HSPC numbers in adult fish indeed stems from a combination of decreased proliferation and increased apoptosis during embryonic development. This defect appears to be mediated via p53(10), as our p53/rad51 double mutants did not display any observable hematological defects in embryos or adults.
  91. ^ Stürzbecher HW, Donzelmann B, Henning W, Knippschild U, Buchhop S (April 1996). "p53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction". The EMBO Journal. 15 (8): 1992–2002. doi:10.1002/j.1460-2075.1996.tb00550.x. PMC 450118. PMID 8617246.
  92. ^ Sonoda E, Sasaki MS, Buerstedde JM, Bezzubova O, Shinohara A, Ogawa H, et al. (January 1998). "Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death". The EMBO Journal. 17 (2): 598–608. doi:10.1093/emboj/17.2.598. PMC 1170409. PMID 9430650.
  93. ^ Wilkins AS, Holliday R (January 2009). "The evolution of meiosis from mitosis". Genetics. 181 (1): 3–12. doi:10.1534/genetics.108.099762. PMC 2621177. PMID 19139151.
  94. ^ Bernstein, H., Bernstein, C. Evolutionary origin and adaptive function of meiosis. In "Meiosis", Intech Publ (Carol Bernstein and Harris Bernstein editors), Chapter 3: 41–75 (2013).

Further reading

[edit]
[edit]
埋单是什么意思 警备区是干什么的 咽炎吃什么药好 双肺纹理增多增粗是什么意思 隐翅虫擦什么药膏
康熙是乾隆的什么人 挛缩是什么意思 产后拉肚子是什么原因引起的 肠胃炎是什么引起的 甲状腺结节什么症状
金针菇炒什么好吃 什么人会得免疫性脑炎 额头和下巴长痘痘是什么原因 一飞冲天是什么生肖 为什么会遗精
抵税是什么意思 疯狗病症状都有什么 业报是什么意思 纯粹什么意思 常山现在叫什么
上眼皮突然肿了是什么原因hcv7jop7ns0r.cn 鹅蛋脸适合戴什么眼镜hcv8jop4ns6r.cn 吃什么长头发luyiluode.com 什么是比特币hcv9jop6ns8r.cn 十指不沾阳春水是什么意思hcv8jop7ns9r.cn
酉时五行属什么hcv9jop5ns2r.cn 螃蟹和什么食物相克wzqsfys.com 长白头发缺什么维生素hcv8jop4ns8r.cn 韬字五行属什么hcv8jop2ns7r.cn 坐月子可以吃什么菜hcv9jop5ns5r.cn
儿童流鼻血什么原因引起的hcv9jop6ns7r.cn 褪黑素有什么用bfb118.com 四史指的是什么hcv9jop7ns5r.cn 什么奶茶好喝hcv9jop5ns1r.cn 调侃什么意思hcv7jop5ns2r.cn
左氧氟沙星治什么病hcv9jop2ns7r.cn 尿路感染检查什么项目hcv8jop9ns1r.cn 梦见手表是什么意思hcv8jop1ns0r.cn 下面有异味是什么原因hcv7jop9ns6r.cn 民政局局长什么级别inbungee.com
百度