什么鸡没有翅膀| 干疮是什么样子的图片| mk属于什么档次| 中国第一个不平等条约是什么| 情劫是什么| 泰山石敢当什么意思| 句加一笔是什么字| 刷墙的白色涂料叫什么| 纹身的人是什么心理| 性病是什么| 公积金取出来有什么影响| 腋下淋巴结肿大挂什么科| 女真族现在是什么族| 肺气阴两虚吃什么中成药| 总胆红素偏高是什么病| 尿酸高平时要注意什么| ye是什么意思| 一什么而入| 血小板低是什么原因| 挖空细胞是什么意思啊| 什么水果对肝脏好| 无病呻吟是什么意思| 炒锅买什么材质的好| 什么是宦官| pdd是什么| 颈椎病吃什么药最好| 湿气重的人吃什么好| 铁皮石斛适合什么人吃| 吃什么水果可以美白| 正痛片别名叫什么| 急性鼻窦炎吃什么药| 孩子感冒发烧吃什么药| 后裔是什么意思| 隐血阳性什么意思| 三竖一横念什么| 高血糖什么原因引起| 意念灰是什么意思| trace是什么意思| 牙上有黑渍是什么原因| 甲状腺看什么门诊| 无花果什么时候种植| 什么叫美尼尔综合症| 胃胀是什么原因| 天贝是什么东西| 水痘用什么药| 茼蒿和什么相克| 耳朵旁边长痘痘是什么原因| 骨癌什么症状| 属猴的幸运色是什么颜色| 频繁感冒是什么原因| 孕妇梦到老公出轨什么意思| 送同学什么毕业礼物好| 错落有致的意思是什么| 胃泌素高是什么原因| 男的有霉菌是什么症状| 轻轻地什么| 虎是什么意思| l是什么意思| 免签国家是什么意思| 化学性肝损伤是什么意思| 吃什么醒酒| 两个脚脖子肿什么原因| adhd是什么| 1月29日是什么星座| 小儿肠炎吃什么药最好| 掉是什么意思| 牙神经拔了对牙齿有什么影响| 怀男孩和女孩有什么区别| 茶毫是什么| 上颌窦炎症是什么病| 吃什么生血| 耳鸣吃什么| 8月7号是什么星座| 心力憔悴是什么意思| 警察两杠一星是什么级别| 有什么症状| ph值低是什么原因| 排卵期是什么时候开始算| 带状疱疹能吃什么| 爱情和面包是什么意思| 挂是什么意思| 收尿干什么用的| 高胆固醇血症是什么意思| 鼻炎吃什么消炎药效果最好| 胃有问题挂什么科| 什么是腺瘤| 棱是什么| 沙僧的武器叫什么| 美国什么时候建国的| 安宫牛黄丸主治什么病| 客服是什么意思| 五行海中金是什么意思| afc是什么意思| 近义词是什么意思| 春宵一刻值千金是什么意思| 手麻木什么原因| 天气一热身上就痒是什么原因| 肠炎吃什么药最好| 气血虚吃什么中成药| 猕猴桃对身体有什么好处| 闻风丧胆指什么动物| 破代表什么生肖| 爆菊是什么意思| 法老是什么意思| 什么了什么| 腰疼吃什么药最有效| 流水生财是什么意思| 呕心沥血是什么意思| 肝吸虫病有什么症状| 香蕉是什么季节的水果| 03年是什么年| 脑梗可以吃什么水果| 12月8日是什么星座| 尿蛋白阴性是什么意思| 一个马一个襄念什么| 穆字五行属什么| 内什么外什么成语| 咳咳是什么意思| Ca是什么| 心眼多是什么意思| 尿偏红色是什么原因| 杨幂的公司叫什么名字| 金色葡萄球菌最怕什么| 怀孕吃什么水果好| 一天当中什么时候血压最高| 飞五行属什么| 小肚子疼是什么情况| 英雄本色是什么意思| chloe是什么牌子| 山楂和什么泡水喝减肥效果最好| 成本倒挂什么意思| 戴银饰变黑是什么原因| cini是什么意思| 洋葱可以炒什么| 蒙脱石是什么东西| 早日康复是什么意思| 常温保存是什么意思| 凌波仙子是什么意思| 嬴政为什么要杀吕不韦| 脚底干裂起硬皮是什么原因怎么治| 腹痛挂什么科| 阴道细菌感染用什么药| 果酸是什么东西| 请人原谅说什么| pi是什么意思| 间接胆红素偏高什么意思| 用盐泡脚有什么好处| 开天门是什么意思| 痛点是什么意思| 泡泡什么意思| 8月12日是什么星座| 尿血吃什么药最好| 机器学习是什么| 革兰阴性杆菌是什么| 神经纤维由什么组成| 吃什么对头发好| 卿字五行属什么| 翳是什么意思| 侏儒症是缺乏什么元素| 维生素b补什么的| 为什么支气管炎咳嗽长期不好| 云仓是什么| 价值连城是什么意思| 茄子与什么相克| 稀料是什么| 老花眼是什么症状| 生普洱和熟普洱有什么区别| 上天的动物是什么生肖| 调和油是什么意思| 一个牙一个合是什么字| 眉毛中间长痘痘是什么原因| 朋友越来越少暗示什么| 磨砂膏是什么| 隋朝之前是什么朝代| 收缩压低是什么原因| 眉毛有什么作用| 特别怕热爱出汗是什么原因| 心里害怕紧张恐惧是什么症状| 口臭吃什么| 胃功能四项检查是什么| 老虎头衣服是什么牌子| 与君共勉是什么意思| 什么是剧烈运动| 成功是什么| 什么是brt| 癌变是什么意思| 尖嘴鱼叫什么鱼| 变质是什么意思| 陋习什么意思| 呕吐发烧吃什么药| 吃什么对大脑记忆力好| 诸葛亮号什么| 跃然纸什么| 印度为什么没把墨脱占领| 心烦意乱吃什么药| 什么的石头| 什么车可以闯红灯| lv的全称是什么| 肺结节吃什么药好| 窦性心律不齐有什么危害| 玄五行属什么| 肺炎用什么药| 1月18日什么星座| 后背疼痛什么原因| 荷兰的国花是什么花| 假体是什么| 金生水什么意思| 维生素b是什么| 香港奶粉为什么限购| 喝蒲公英茶有什么作用| 1992年是什么命| 什么现象证明你在长高| 肾积水是什么意思| 游戏是什么| 夜未央什么意思| 属猴女和什么属相最配| 大蒜不能和什么一起吃| 卢字五行属什么| 什么力竭| 右肺下叶纤维灶是什么意思| 股骨长是指什么| 肾囊肿有什么症状表现| 人为什么会梦游| 吾矛之利的利什么意思| 胎心停了是什么原因引起的| 铁蛋白高吃什么食物好| ai是什么| 清醒的反义词是什么| 威士忌兑什么好喝| 银杯子喝水有什么好处与坏处| 做完胃肠镜后可以吃什么| 拉肚子吃什么药最有效果| 入职体检70元一般检查什么| 晚上睡觉脚抽筋是什么原因| 青蛙是什么生肖| 榴莲为什么那么臭| 夏天的诗句有什么| 女人尿多是什么原因| 白色t恤配什么裤子| 不胜感激是什么意思| 耍朋友是什么意思| 佛家思想的核心是什么| 小拇指发麻是什么原因| 闹肚子吃什么药| 猫咪呕吐吃什么药可以解决| mt指什么| 头昏脑胀是什么原因| 三观不合指的是什么| azul是什么颜色| 北方的木瓜叫什么| 现在的节气是什么| 大海里面有什么| 腺病毒是什么病毒| 心脏在什么位置| 奶酪是什么做的| 嘴唇干是什么原因引起的| 小月子吃什么好| 挚爱适合用在什么人| 胰腺炎是什么症状| 1月7号什么星座| 狗吐了是什么原因| 月经前一周是什么期| 君子菜是什么蔬菜| 治字五行属什么| 百度Jump to content

特别羡慕爱发自拍的人!每日轻松一刻4月17日晚间版

From Wikipedia, the free encyclopedia
(Redirected from Neuromorphic engineering)
百度 秦始皇的真名叫什么

Neuromorphic computing is an approach to computing that is inspired by the structure and function of the human brain.[1][2] A neuromorphic computer/chip is any device that uses physical artificial neurons to do computations.[3][4] In recent times, the term neuromorphic has been used to describe analog, digital, mixed-mode analog/digital VLSI, and software systems that implement models of neural systems (for perception, motor control, or multisensory integration). Recent advances have even discovered ways to detect sound at different wavelengths through liquid solutions of chemical systems.[5] An article published by AI researchers at Los Alamos National Laboratory states that, "neuromorphic computing, the next generation of AI, will be smaller, faster, and more efficient than the human brain."[6]

A key aspect of neuromorphic engineering is understanding how the morphology of individual neurons, circuits, applications, and overall architectures creates desirable computations, affects how information is represented, influences robustness to damage, incorporates learning and development, adapts to local change (plasticity), and facilitates evolutionary change.

Neuromorphic engineering is an interdisciplinary subject that takes inspiration from biology, physics, mathematics, computer science, and electronic engineering[4] to design artificial neural systems, such as vision systems, head-eye systems, auditory processors, and autonomous robots, whose physical architecture and design principles are based on those of biological nervous systems.[7] One of the first applications for neuromorphic engineering was proposed by Carver Mead[8] in the late 1980s.

Neurological inspiration

[edit]

Neuromorphic engineering is for now set apart by the inspiration it takes from what is known about the structure and operations of the brain. Neuromorphic engineering translates what we know about the brain's function into computer systems. Work has mostly focused on replicating the analog nature of biological computation and the role of neurons in cognition.[citation needed]

The biological processes of neurons and their synapses are dauntingly complex, and thus very difficult to artificially simulate. A key feature of biological brains is that all of the processing in neurons uses analog chemical signals. This makes it hard to replicate brains in computers because the current generation of computers is completely digital. However, the characteristics of these chemical signals can be abstracted into mathematical functions that closely capture the essence of the neuron's operations.[citation needed]

The goal of neuromorphic computing is not to perfectly mimic the brain and all of its functions, but instead to extract what is known of its structure and operations to be used in a practical computing system. No neuromorphic system will claim nor attempt to reproduce every element of neurons and synapses, but all adhere to the idea that computation is highly distributed throughout a series of small computing elements analogous to a neuron. While this sentiment is standard, researchers chase this goal with different methods.[9] Anatomical neural wiring diagrams that are being imaged by electron microscopy[10] and functional neural connection maps that could be potentially obtained via intracellular recording at scale[11] can be used to better inspire, if not exactly mimicked, neuromorphic computing systems with more details.

Implementation

[edit]

The implementation of neuromorphic computing on the hardware level can be realized by oxide-based memristors,[12] spintronic memories, threshold switches, transistors,[13][4] among others. The implementation details overlap with the concepts of artificial immune systems. Training software-based neuromorphic systems of spiking neural networks can be achieved using error backpropagation, e.g. using Python-based frameworks such as snnTorch,[14] or using canonical learning rules from the biological learning literature, e.g. using BindsNet.[15]

Examples

[edit]

As early as 2006, researchers at Georgia Tech published a field programmable neural array.[16] This chip was the first in a line of increasingly complex arrays of floating gate transistors that allowed programmability of charge on the gates of MOSFETs to model the channel-ion characteristics of neurons in the brain and was one of the first cases of a silicon programmable array of neurons.

In November 2011, a group of MIT researchers created a computer chip that mimics the analog, ion-based communication in a synapse between two neurons using 400 transistors and standard CMOS manufacturing techniques.[17][18]

In June 2012, spintronic researchers at Purdue University presented a paper on the design of a neuromorphic chip using lateral spin valves and memristors. They argue that the architecture works similarly to neurons and can therefore be used to test methods of reproducing the brain's processing. In addition, these chips are significantly more energy-efficient than conventional ones.[19]

Research at HP Labs on Mott memristors has shown that while they can be non-volatile, the volatile behavior exhibited at temperatures significantly below the phase transition temperature can be exploited to fabricate a neuristor,[20] a biologically inspired device that mimics behavior found in neurons.[20] In September 2013, they presented models and simulations that show how the spiking behavior of these neuristors can be used to form the components required for a Turing machine.[21]

Neurogrid, built by Brains in Silicon at Stanford University,[22] is an example of hardware designed using neuromorphic engineering principles. The circuit board is composed of 16 custom-designed chips, referred to as NeuroCores. Each NeuroCore's analog circuitry is designed to emulate neural elements for 65536 neurons, maximizing energy efficiency. The emulated neurons are connected using digital circuitry designed to maximize spiking throughput.[23][24]

A research project with implications for neuromorphic engineering is the Human Brain Project that is attempting to simulate a complete human brain in a supercomputer using biological data. It is made up of a group of researchers in neuroscience, medicine, and computing.[25] Henry Markram, the project's co-director, has stated that the project proposes to establish a foundation to explore and understand the brain and its diseases, and to use that knowledge to build new computing technologies. The three primary goals of the project are to better understand how the pieces of the brain fit and work together, to understand how to objectively diagnose and treat brain diseases and to use the understanding of the human brain to develop neuromorphic computers. Since the simulation of a complete human brain will require a powerful supercomputer, the current focus on neuromorphic computers is being encouraged.[26] $1.3 billion has been allocated to the project by The European Commission.[27]

Other research with implications for neuromorphic engineering involve the BRAIN Initiative[28] and the TrueNorth chip from IBM.[29] Neuromorphic devices have also been demonstrated using nanocrystals, nanowires, and conducting polymers.[30] There also is development of a memristive device for quantum neuromorphic architectures.[31] In 2022, researchers at MIT have reported the development of brain-inspired artificial synapses, using the ion proton (H+
), for 'analog deep learning'.[32][33]

Intel unveiled its neuromorphic research chip, called "Loihi", in October 2017. The chip uses an asynchronous spiking neural network (SNN) to implement adaptive self-modifying event-driven fine-grained parallel computations used to implement learning and inference with high efficiency.[34][35]

IMEC, a Belgium-based nanoelectronics research center, demonstrated the world's first self-learning neuromorphic chip. The brain-inspired chip, based on OxRAM technology, has the capability of self-learning and has been demonstrated to have the ability to compose music.[36] IMEC released the 30-second tune composed by the prototype. The chip was sequentially loaded with songs in the same time signature and style. The songs were old Belgian and French flute minuets, from which the chip learned the rules at play and then applied them.[37]

The Blue Brain Project, led by Henry Markram, aims to build biologically detailed digital reconstructions and simulations of the mouse brain. The Blue Brain Project has created in silico models of rodent brains, while attempting to replicate as many details about its biology as possible. The supercomputer-based simulations offer new perspectives on understanding the structure and functions of the brain.

The European Union funded a series of projects at the University of Heidelberg, which led to the development of BrainScaleS (brain-inspired multiscale computation in neuromorphic hybrid systems), a hybrid analog neuromorphic supercomputer located at Heidelberg University, Germany. It was developed as part of the Human Brain Project neuromorphic computing platform and is the complement to the SpiNNaker supercomputer (which is based on digital technology). The architecture used in BrainScaleS mimics biological neurons and their connections on a physical level; additionally, since the components are made of silicon, these model neurons operate on average 864 times (24 hours of real time is 100 seconds in the machine simulation) faster than that of their biological counterparts.[38]

In 2019, the European Union funded the project "Neuromorphic quantum computing"[39] exploring the use of neuromorphic computing to perform quantum operations. Neuromorphic quantum computing[40] (abbreviated as 'n.quantum computing') is an unconventional computing type of computing that uses neuromorphic computing to perform quantum operations.[41][42] It was suggested that quantum algorithms, which are algorithms that run on a realistic model of quantum computation, can be computed equally efficiently with neuromorphic quantum computing.[43][44][45][46][47] Both, traditional quantum computing and neuromorphic quantum computing are physics-based unconventional computing approaches to computations and do not follow the von Neumann architecture. They both construct a system (a circuit) that represents the physical problem at hand, and then leverage their respective physics properties of the system to seek the "minimum". Neuromorphic quantum computing and quantum computing share similar physical properties during computation.[47][48]

Brainchip announced in October 2021 that it was taking orders for its Akida AI Processor Development Kits[49] and in January 2022 that it was taking orders for its Akida AI Processor PCIe boards,[50] making it the world's first commercially available neuromorphic processor.

Neuromemristive systems

[edit]

Neuromemristive systems are a subclass of neuromorphic computing systems that focuses on the use of memristors to implement neuroplasticity. While neuromorphic engineering focuses on mimicking biological behavior, neuromemristive systems focus on abstraction.[51] For example, a neuromemristive system may replace the details of a cortical microcircuit's behavior with an abstract neural network model.[52]

There exist several neuron inspired threshold logic functions[12] implemented with memristors that have applications in high level pattern recognition applications. Some of the applications reported recently include speech recognition,[53] face recognition[54] and object recognition.[55] They also find applications in replacing conventional digital logic gates.[56][57]

For (quasi)ideal passive memristive circuits, the evolution of the memristive memories can be written in a closed form (Caravelli–Traversa–Di Ventra equation):[58][59]

as a function of the properties of the physical memristive network and the external sources. The equation is valid for the case of the Williams-Strukov original toy model, as in the case of ideal memristors, . However, the hypothesis of the existence of an ideal memristor is debatable.[60] In the equation above, is the "forgetting" time scale constant, typically associated to memory volatility, while is the ratio of off and on values of the limit resistances of the memristors, is the vector of the sources of the circuit and is a projector on the fundamental loops of the circuit. The constant has the dimension of a voltage and is associated to the properties of the memristor; its physical origin is the charge mobility in the conductor. The diagonal matrix and vector and respectively, are instead the internal value of the memristors, with values between 0 and 1. This equation thus requires adding extra constraints on the memory values in order to be reliable.

It has been recently shown that the equation above exhibits tunneling phenomena and used to study Lyapunov functions.[61][59]

Neuromorphic sensors

[edit]

The concept of neuromorphic systems can be extended to sensors (not just to computation). An example of this applied to detecting light is the retinomorphic sensor or, when employed in an array, the event camera. An event camera's pixels all register changes in brightness levels individually, which makes these cameras comparable to human eyesight in their theoretical power consumption.[62] In 2022, researchers from the Max Planck Institute for Polymer Research reported an organic artificial spiking neuron that exhibits the signal diversity of biological neurons while operating in the biological wetware, thus enabling in-situ neuromorphic sensing and biointerfacing applications.[63][64]

Military applications

[edit]

The Joint Artificial Intelligence Center, a branch of the U.S. military, is a center dedicated to the procurement and implementation of AI software and neuromorphic hardware for combat use. Specific applications include smart headsets/goggles and robots. JAIC intends to rely heavily on neuromorphic technology to connect "every sensor (to) every shooter" within a network of neuromorphic-enabled units.

[edit]

While the interdisciplinary concept of neuromorphic engineering is relatively new, many of the same ethical considerations apply to neuromorphic systems as apply to human-like machines and artificial intelligence in general. However, the fact that neuromorphic systems are designed to mimic a human brain gives rise to unique ethical questions surrounding their usage.

However, the practical debate is that neuromorphic hardware as well as artificial "neural networks" are immensely simplified models of how the brain operates or processes information at a much lower complexity in terms of size and functional technology and a much more regular structure in terms of connectivity. Comparing neuromorphic chips to the brain is a very crude comparison similar to comparing a plane to a bird just because they both have wings and a tail. The fact is that biological neural cognitive systems are many orders of magnitude more energy- and compute-efficient than current state-of-the-art AI and neuromorphic engineering is an attempt to narrow this gap by inspiring from the brain's mechanism just like many engineering designs have bio-inspired features.

Social concerns

[edit]

Significant ethical limitations may be placed on neuromorphic engineering due to public perception.[65] Special Eurobarometer 382: Public Attitudes Towards Robots, a survey conducted by the European Commission, found that 60% of European Union citizens wanted a ban of robots in the care of children, the elderly, or the disabled. Furthermore, 34% were in favor of a ban on robots in education, 27% in healthcare, and 20% in leisure. The European Commission classifies these areas as notably "human." The report cites increased public concern with robots that are able to mimic or replicate human functions. Neuromorphic engineering, by definition, is designed to replicate the function of the human brain.[66]

The social concerns surrounding neuromorphic engineering are likely to become even more profound in the future. The European Commission found that EU citizens between the ages of 15 and 24 are more likely to think of robots as human-like (as opposed to instrument-like) than EU citizens over the age of 55. When presented an image of a robot that had been defined as human-like, 75% of EU citizens aged 15–24 said it corresponded with the idea they had of robots while only 57% of EU citizens over the age of 55 responded the same way. The human-like nature of neuromorphic systems, therefore, could place them in the categories of robots many EU citizens would like to see banned in the future.[66]

Personhood

[edit]

As neuromorphic systems have become increasingly advanced, some scholars[who?] have advocated for granting personhood rights to these systems. Daniel Lim, a critic of technology development in the Human Brain Project, which aims to advance brain-inspired computing, has argued that advancement in neuromorphic computing could lead to machine consciousness or personhood.[67] If these systems are to be treated as people, then many tasks humans perform using neuromorphic systems, including their termination, may be morally impermissible as these acts would violate their autonomy.[67]

Ownership and property rights

[edit]

There is significant legal debate around property rights and artificial intelligence. In Acohs Pty Ltd v. Ucorp Pty Ltd, Justice Christopher Jessup of the Federal Court of Australia found that the source code for Material Safety Data Sheets could not be copyrighted as it was generated by a software interface rather than a human author.[68] The same question may apply to neuromorphic systems: if a neuromorphic system successfully mimics a human brain and produces a piece of original work, who, if anyone, should be able to claim ownership of the work?[69]

See also

[edit]

References

[edit]
  1. ^ Ham, Donhee; Park, Hongkun; Hwang, Sungwoo; Kim, Kinam (2021). "Neuromorphic electronics based on copying and pasting the brain". Nature Electronics. 4 (9): 635–644. doi:10.1038/s41928-021-00646-1. ISSN 2520-1131. S2CID 240580331.
  2. ^ van de Burgt, Yoeri; Lubberman, Ewout; Fuller, Elliot J.; Keene, Scott T.; Faria, Grégorio C.; Agarwal, Sapan; Marinella, Matthew J.; Alec Talin, A.; Salleo, Alberto (April 2017). "A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing". Nature Materials. 16 (4): 414–418. Bibcode:2017NatMa..16..414V. doi:10.1038/nmat4856. ISSN 1476-4660. PMID 28218920.
  3. ^ Mead, Carver (1990). "Neuromorphic electronic systems" (PDF). Proceedings of the IEEE. 78 (10): 1629–1636. doi:10.1109/5.58356. S2CID 1169506.
  4. ^ a b c Rami A. Alzahrani; Alice C. Parker (July 2020). Neuromorphic Circuits With Neural Modulation Enhancing the Information Content of Neural Signaling. International Conference on Neuromorphic Systems 2020. pp. 1–8. doi:10.1145/3407197.3407204. S2CID 220794387.
  5. ^ Tomassoli, Laura; Silva-Dias, Leonardo; Dolnik, Milos; Epstein, Irving R.; Germani, Raimondo; Gentili, Pier Luigi (February 8, 2024). "Neuromorphic Engineering in Wetware: Discriminating Acoustic Frequencies through Their Effects on Chemical Waves". The Journal of Physical Chemistry B. 128 (5): 1241–1255. doi:10.1021/acs.jpcb.3c08429. ISSN 1520-6106. PMID 38285636.
  6. ^ Dickman, Kyle. "Neuromorphic computing: the future of AI | LANL". Kyle Dickman. Retrieved April 16, 2025.
  7. ^ Boddhu, S. K.; Gallagher, J. C. (2012). "Qualitative Functional Decomposition Analysis of Evolved Neuromorphic Flight Controllers". Applied Computational Intelligence and Soft Computing. 2012: 1–21. doi:10.1155/2012/705483.
  8. ^ Mead, Carver A.; Mahowald, M. A. (January 1, 1988). "A silicon model of early visual processing %2888%2990024-X". Neural Networks. 1 (1): 91–97. doi:10.1016/0893-6080(88)90024-X. ISSN 0893-6080.
  9. ^ Furber, Steve (2016). "Large-scale neuromorphic computing systems". Journal of Neural Engineering. 13 (5): 1–15. Bibcode:2016JNEng..13e1001F. doi:10.1088/1741-2560/13/5/051001. PMID 27529195.
  10. ^ Devineni, Anita (October 2, 2024). "A complete map of the fruit-fly". Nature. 634 (8032): 35–36. doi:10.1038/d41586-024-03029-6. PMID 39358530.
  11. ^ Wang, Jun; Jung, Woo-Bin; Gertner, Rona; Park, Hongkun; Ham, Donhee (2025). "Synaptic connectivity mapping among thousands of neurons via parallelized intracellular recording with a microhole electrode array". Nature Biomedical Engineering. doi:10.1038/s41551-025-01352-5. PMID 39934437.
  12. ^ a b Maan, A. K.; Jayadevi, D. A.; James, A. P. (January 1, 2016). "A Survey of Memristive Threshold Logic Circuits". IEEE Transactions on Neural Networks and Learning Systems. PP (99): 1734–1746. arXiv:1604.07121. Bibcode:2016arXiv160407121M. doi:10.1109/TNNLS.2016.2547842. ISSN 2162-237X. PMID 27164608. S2CID 1798273.
  13. ^ Zhou, You; Ramanathan, S. (August 1, 2015). "Mott Memory and Neuromorphic Devices". Proceedings of the IEEE. 103 (8): 1289–1310. doi:10.1109/JPROC.2015.2431914. ISSN 0018-9219. S2CID 11347598.
  14. ^ Eshraghian, Jason K.; Ward, Max; Neftci, Emre; Wang, Xinxin; Lenz, Gregor; Dwivedi, Girish; Bennamoun, Mohammed; Jeong, Doo Seok; Lu, Wei D. (October 1, 2021). "Training Spiking Neural Networks Using Lessons from Deep Learning". arXiv:2109.12894 [cs.NE].
  15. ^ "Hananel-Hazan/bindsnet: Simulation of spiking neural networks (SNNs) using PyTorch". GitHub. March 31, 2020.
  16. ^ Farquhar, Ethan; Hasler, Paul. (May 2006). "A Field Programmable Neural Array". 2006 IEEE International Symposium on Circuits and Systems. pp. 4114–4117. doi:10.1109/ISCAS.2006.1693534. ISBN 978-0-7803-9389-9. S2CID 206966013.
  17. ^ "MIT creates "brain chip"". November 15, 2011. Retrieved December 4, 2012.
  18. ^ Poon, Chi-Sang; Zhou, Kuan (2011). "Neuromorphic silicon neurons and large-scale neural networks: challenges and opportunities". Frontiers in Neuroscience. 5: 108. doi:10.3389/fnins.2011.00108. PMC 3181466. PMID 21991244.
  19. ^ Sharad, Mrigank; Augustine, Charles; Panagopoulos, Georgios; Roy, Kaushik (2012). "Proposal For Neuromorphic Hardware Using Spin Devices". arXiv:1206.3227 [cond-mat.dis-nn].
  20. ^ a b Pickett, M. D.; Medeiros-Ribeiro, G.; Williams, R. S. (2012). "A scalable neuristor built with Mott memristors". Nature Materials. 12 (2): 114–7. Bibcode:2013NatMa..12..114P. doi:10.1038/nmat3510. PMID 23241533. S2CID 16271627.
  21. ^ Matthew D Pickett & R Stanley Williams (September 2013). "Phase transitions enable computational universality in neuristor-based cellular automata". Nanotechnology. 24 (38). IOP Publishing Ltd. 384002. Bibcode:2013Nanot..24L4002P. doi:10.1088/0957-4484/24/38/384002. PMID 23999059. S2CID 9910142.
  22. ^ Boahen, Kwabena (April 24, 2014). "Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations". Proceedings of the IEEE. 102 (5): 699–716. doi:10.1109/JPROC.2014.2313565. S2CID 17176371.
  23. ^ Waldrop, M. Mitchell (2013). "Neuroelectronics: Smart connections". Nature. 503 (7474): 22–4. Bibcode:2013Natur.503...22W. doi:10.1038/503022a. PMID 24201264.
  24. ^ Benjamin, Ben Varkey; Peiran Gao; McQuinn, Emmett; Choudhary, Swadesh; Chandrasekaran, Anand R.; Bussat, Jean-Marie; Alvarez-Icaza, Rodrigo; Arthur, John V.; Merolla, Paul A.; Boahen, Kwabena (2014). "Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations". Proceedings of the IEEE. 102 (5): 699–716. doi:10.1109/JPROC.2014.2313565. S2CID 17176371.
  25. ^ "Involved Organizations". Archived from the original on March 2, 2013. Retrieved February 22, 2013.
  26. ^ "Human Brain Project". Retrieved February 22, 2013.
  27. ^ "The Human Brain Project and Recruiting More Cyberwarriors". January 29, 2013. Retrieved February 22, 2013.
  28. ^ Neuromorphic computing: The machine of a new soul, The Economist, 2025-08-05
  29. ^ Modha, Dharmendra (August 2014). "A million spiking-neuron integrated circuit with a scalable communication network and interface". Science. 345 (6197): 668–673. Bibcode:2014Sci...345..668M. doi:10.1126/science.1254642. PMID 25104385. S2CID 12706847.
  30. ^ Fairfield, Jessamyn (March 1, 2017). "Smarter Machines" (PDF).
  31. ^ Spagnolo, Michele; Morris, Joshua; Piacentini, Simone; Antesberger, Michael; Massa, Francesco; Crespi, Andrea; Ceccarelli, Francesco; Osellame, Roberto; Walther, Philip (April 2022). "Experimental photonic quantum memristor". Nature Photonics. 16 (4): 318–323. arXiv:2105.04867. Bibcode:2022NaPho..16..318S. doi:10.1038/s41566-022-00973-5. ISSN 1749-4893. S2CID 234358015.
    News article: "Erster "Quanten-Memristor" soll KI und Quantencomputer verbinden". DER STANDARD (in Austrian German). Retrieved April 28, 2022.
    Lay summary report: "Artificial neurons go quantum with photonic circuits". University of Vienna. Retrieved April 19, 2022.
  32. ^ "'Artificial synapse' could make neural networks work more like brains". New Scientist. Retrieved August 21, 2022.
  33. ^ Onen, Murat; Emond, Nicolas; Wang, Baoming; Zhang, Difei; Ross, Frances M.; Li, Ju; Yildiz, Bilge; del Alamo, Jesús A. (July 29, 2022). "Nanosecond protonic programmable resistors for analog deep learning" (PDF). Science. 377 (6605): 539–543. Bibcode:2022Sci...377..539O. doi:10.1126/science.abp8064. ISSN 0036-8075. PMID 35901152. S2CID 251159631.
  34. ^ Davies, Mike; et al. (January 16, 2018). "Loihi: A Neuromorphic Manycore Processor with On-Chip Learning". IEEE Micro. 38 (1): 82–99. doi:10.1109/MM.2018.112130359. S2CID 3608458.
  35. ^ Morris, John. "Why Intel built a neuromorphic chip". ZDNet. Retrieved August 17, 2018.
  36. ^ "Imec demonstrates self-learning neuromorphic chip that composes music". IMEC International. Retrieved October 1, 2019.
  37. ^ Bourzac, Katherine (May 23, 2017). "A Neuromorphic Chip That Makes Music". IEEE Spectrum. Retrieved October 1, 2019.
  38. ^ "Beyond von Neumann, Neuromorphic Computing Steadily Advances". HPCwire. March 21, 2016. Retrieved October 8, 2021.
  39. ^ "Neuromrophic Quantum Computing | Quromorphic Project | Fact Sheet | H2020". CORDIS | European Commission. doi:10.3030/828826. Retrieved March 18, 2024.
  40. ^ Pehle, Christian; Wetterich, Christof (March 30, 2021), "Neuromorphic quantum computing", Physical Review E, 106 (4): 045311, arXiv:2005.01533, Bibcode:2022PhRvE.106d5311P, doi:10.1103/PhysRevE.106.045311, PMID 36397478
  41. ^ Wetterich, C. (November 1, 2019). "Quantum computing with classical bits". Nuclear Physics B. 948: 114776. arXiv:1806.05960. Bibcode:2019NuPhB.94814776W. doi:10.1016/j.nuclphysb.2019.114776. ISSN 0550-3213.
  42. ^ Pehle, Christian; Meier, Karlheinz; Oberthaler, Markus; Wetterich, Christof (October 24, 2018), Emulating quantum computation with artificial neural networks, arXiv:1810.10335
  43. ^ Carleo, Giuseppe; Troyer, Matthias (February 10, 2017). "Solving the quantum many-body problem with artificial neural networks". Science. 355 (6325): 602–606. arXiv:1606.02318. Bibcode:2017Sci...355..602C. doi:10.1126/science.aag2302. ISSN 0036-8075. PMID 28183973.
  44. ^ Torlai, Giacomo; Mazzola, Guglielmo; Carrasquilla, Juan; Troyer, Matthias; Melko, Roger; Carleo, Giuseppe (May 2018). "Neural-network quantum state tomography". Nature Physics. 14 (5): 447–450. arXiv:1703.05334. Bibcode:2018NatPh..14..447T. doi:10.1038/s41567-018-0048-5. ISSN 1745-2481.
  45. ^ Sharir, Or; Levine, Yoav; Wies, Noam; Carleo, Giuseppe; Shashua, Amnon (January 16, 2020). "Deep Autoregressive Models for the Efficient Variational Simulation of Many-Body Quantum Systems". Physical Review Letters. 124 (2): 020503. arXiv:1902.04057. Bibcode:2020PhRvL.124b0503S. doi:10.1103/PhysRevLett.124.020503. PMID 32004039.
  46. ^ Broughton, Michael; Verdon, Guillaume; McCourt, Trevor; Martinez, Antonio J.; Yoo, Jae Hyeon; Isakov, Sergei V.; Massey, Philip; Halavati, Ramin; Niu, Murphy Yuezhen (August 26, 2021), TensorFlow Quantum: A Software Framework for Quantum Machine Learning, arXiv:2003.02989
  47. ^ a b Di Ventra, Massimiliano (March 23, 2022), MemComputing vs. Quantum Computing: some analogies and major differences, arXiv:2203.12031
  48. ^ Wilkinson, Samuel A.; Hartmann, Michael J. (June 8, 2020). "Superconducting quantum many-body circuits for quantum simulation and computing". Applied Physics Letters. 116 (23). arXiv:2003.08838. Bibcode:2020ApPhL.116w0501W. doi:10.1063/5.0008202. ISSN 0003-6951.
  49. ^ "Taking Orders of Akida AI Processor Development Kits". October 21, 2021.
  50. ^ "First mini PCIexpress board with spiking neural network chip". January 19, 2022.
  51. ^ "002.08 N.I.C.E. Workshop 2014: Towards Intelligent Computing with Neuromemristive Circuits and Systems – Feb. 2014". digitalops.sandia.gov. Retrieved August 26, 2019.
  52. ^ C. Merkel and D. Kudithipudi, "Neuromemristive extreme learning machines for pattern classification," ISVLSI, 2014.
  53. ^ Maan, A.K.; James, A.P.; Dimitrijev, S. (2015). "Memristor pattern recogniser: isolated speech word recognition". Electronics Letters. 51 (17): 1370–1372. Bibcode:2015ElL....51.1370M. doi:10.1049/el.2015.1428. hdl:10072/140989. S2CID 61454815.
  54. ^ Maan, Akshay Kumar; Kumar, Dinesh S.; James, Alex Pappachen (January 1, 2014). "Memristive Threshold Logic Face Recognition". Procedia Computer Science. 5th Annual International Conference on Biologically Inspired Cognitive Architectures, 2014 BICA. 41: 98–103. doi:10.1016/j.procs.2014.11.090. hdl:10072/68372.
  55. ^ Maan, A.K.; Kumar, D.S.; Sugathan, S.; James, A.P. (October 1, 2015). "Memristive Threshold Logic Circuit Design of Fast Moving Object Detection". IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 23 (10): 2337–2341. arXiv:1410.1267. doi:10.1109/TVLSI.2014.2359801. ISSN 1063-8210. S2CID 9647290.
  56. ^ James, A.P.; Francis, L.R.V.J.; Kumar, D.S. (January 1, 2014). "Resistive Threshold Logic". IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 22 (1): 190–195. arXiv:1308.0090. doi:10.1109/TVLSI.2012.2232946. ISSN 1063-8210. S2CID 7357110.
  57. ^ James, A.P.; Kumar, D.S.; Ajayan, A. (November 1, 2015). "Threshold Logic Computing: Memristive-CMOS Circuits for Fast Fourier Transform and Vedic Multiplication". IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 23 (11): 2690–2694. arXiv:1411.5255. doi:10.1109/TVLSI.2014.2371857. ISSN 1063-8210. S2CID 6076956.
  58. ^ Caravelli; et al. (2017). "The complex dynamics of memristive circuits: analytical results and universal slow relaxation". Physical Review E. 95 (2): 022140. arXiv:1608.08651. Bibcode:2017PhRvE..95b2140C. doi:10.1103/PhysRevE.95.022140. PMID 28297937. S2CID 6758362.
  59. ^ a b Caravelli; et al. (2021). "Global minimization via classical tunneling assisted by collective force field formation". Science Advances. 7 (52): 022140. arXiv:1608.08651. Bibcode:2021SciA....7.1542C. doi:10.1126/sciadv.abh1542. PMID 28297937. S2CID 231847346.
  60. ^ Abraham, Isaac (July 20, 2018). "The case for rejecting the memristor as a fundamental circuit element". Scientific Reports. 8 (1): 10972. Bibcode:2018NatSR...810972A. doi:10.1038/s41598-018-29394-7. ISSN 2045-2322. PMC 6054652. PMID 30030498.
  61. ^ Sheldon, Forrest (2018). Collective Phenomena in Memristive Networks: Engineering phase transitions into computation. UC San Diego Electronic Theses and Dissertations.
  62. ^ Skorka, Orit (July 1, 2011). "Toward a digital camera to rival the human eye". Journal of Electronic Imaging. 20 (3): 033009–033009–18. Bibcode:2011JEI....20c3009S. doi:10.1117/1.3611015. ISSN 1017-9909.
  63. ^ Sarkar, Tanmoy; Lieberth, Katharina; Pavlou, Aristea; Frank, Thomas; Mailaender, Volker; McCulloch, Iain; Blom, Paul W. M.; Torriccelli, Fabrizio; Gkoupidenis, Paschalis (November 7, 2022). "An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing". Nature Electronics. 5 (11): 774–783. doi:10.1038/s41928-022-00859-y. hdl:10754/686016. ISSN 2520-1131. S2CID 253413801.
  64. ^ "Artificial neurons emulate biological counterparts to enable synergetic operation". Nature Electronics. 5 (11): 721–722. November 10, 2022. doi:10.1038/s41928-022-00862-3. ISSN 2520-1131. S2CID 253469402.
  65. ^ Artificial Intelligence and Life in 2030: One Hundred Year Study on Artificial Intelligence (PDF) (Report). Stanford University. September 2016. Archived from the original (PDF) on May 30, 2019. Retrieved December 26, 2019.
  66. ^ a b European Commission (September 2012). "Special Eurobarometer 382: Public Attitudes Towards Robots" (PDF). European Commission.
  67. ^ a b Lim, Daniel (June 1, 2014). "Brain simulation and personhood: a concern with the Human Brain Project". Ethics and Information Technology. 16 (2): 77–89. doi:10.1007/s10676-013-9330-5. ISSN 1572-8439. S2CID 17415814.
  68. ^ Lavan. "Copyright in source code and digital products". Lavan. Retrieved May 10, 2019.
  69. ^ Eshraghian, Jason K. (March 9, 2020). "Human Ownership of Artificial Creativity". Nature Machine Intelligence. 2 (3): 157–160. doi:10.1038/s42256-020-0161-x. S2CID 215991449.
[edit]
香蕉不能和什么水果一起吃 挂彩是什么意思 口苦是什么问题 吃葡萄皮有什么好处 黑魔鬼烟为什么是禁烟
倒立有什么好处 血脂高挂什么科 硬伤是什么意思 男人阳萎吃什么药最好 舒字属于五行属什么
口腔溃疡补充什么维生素 二甲双胍是什么药 中元节注意什么 正月开什么花 健康证都查什么传染病
月亮为什么是红色的 扁桃体发炎什么症状 见异思迁什么意思 冥界是什么意思 掷是什么意思
膜性肾病什么意思helloaicloud.com 梨花压海棠是什么意思hcv7jop6ns5r.cn 狼牙套是什么hcv8jop3ns8r.cn 月经一直不干净是什么原因引起的hcv8jop8ns8r.cn 鼠的守护神是什么菩萨hcv7jop9ns2r.cn
心率偏低会有什么危害ff14chat.com 脚痛是什么原因hcv9jop3ns5r.cn 吃坏肚子了吃什么药hcv9jop3ns0r.cn 李世民和武则天什么关系hcv8jop3ns5r.cn 脚癣是什么原因引起的hcv8jop9ns5r.cn
什么叫中位数hcv9jop0ns5r.cn kg是什么意思hcv9jop3ns8r.cn 孩子咬手指甲是什么原因hcv9jop2ns4r.cn 小狗呕吐吃什么药hcv9jop4ns0r.cn 什么叫肾功能不全weuuu.com
甘油三脂是什么意思hcv8jop2ns6r.cn 什么的医生hcv9jop8ns1r.cn 孵化基地是什么意思hcv8jop2ns8r.cn 什么什么的眼睛hcv8jop1ns9r.cn Iud是什么hcv7jop4ns8r.cn
百度