称心如意是什么意思| 拿手机手抖是什么原因| 猫薄荷是什么| 什么的故事填词语| 血窦是什么意思| 一个立一个羽读什么| 急性尿道炎吃什么药| 偶尔心慌是什么原因| 小针刀是什么| 唇炎是什么原因引起的| 婴幼儿吃什么奶粉好| 医院特需门诊什么意思| 小猫什么时候可以洗澡| 恶魔是什么意思| 五个月宝宝可以吃什么水果| 职业年金是什么意思| 春秋是一部什么体史书| aqi是什么| 男生回复嗯嗯代表什么| 论文检索号是什么| 冰妹什么意思| 一代表什么意思| 梦见螃蟹是什么预兆| 肆意什么意思| 驼背是什么原因造成的| 清福是什么意思| 青蟹什么季节吃最好| 女生腋毛多是什么原因| 什么是血管瘤| 左侧上颌窦炎是什么病| 经常上火是什么原因| loveyourself什么意思| 为什么会脱发| 七九年属什么| 奶水不足吃什么下奶多| 类风湿性关节炎吃什么药| 白露是什么季节的节气| 做梦拉屎是什么意思| 取环后要注意什么事项| 低血糖会出现什么症状| 5到7点是什么时辰| 2月份是什么星座| 血糖高适合吃什么食物| 放疗有什么危害| 梦见蟒蛇是什么预兆| 六月一日什么星座| 特别怕热爱出汗是什么原因| 流产后不能吃什么东西| 竹叶青属于什么茶| 喝红茶有什么好处和坏处| 为什么同房后小腹疼痛| 心疼是什么原因| 躺平什么意思| 拉肚子能吃什么菜| 腺肌症是什么症状| 滚床单是什么意思| 咳嗽吃什么食物好得快| 女人有卧蚕代表什么| 吃维生素c片有什么好处| 朊病毒是什么| 痛风什么蔬菜不能吃| 德育是什么| 坐月子吃什么| 沱茶属于什么茶| 什么是疣图片| 多才多艺是什么生肖| 莞尔一笑什么意思| dyj什么意思| 什么是代理| 毛泽东属相是什么| 什么是聚酯纤维面料| 眼压高有什么症状| circles是什么意思| 舌苔厚有齿痕吃什么药| 双子座是什么时候| 观察是什么意思| 过敏性紫癜用什么药| 李子什么时候成熟| c肽是什么| 二月出生是什么星座| dht是什么意思| lpn什么意思| 阴道内痒是什么原因| vivo是什么牌子| 心脏彩超挂什么科| 腰痛贴什么膏药最好| 红花代表什么生肖| 滋润是什么意思| 跳蛋什么意思| 头发一把一把的掉是什么原因| 沙棘原浆有什么作用| 鼓刹和碟刹有什么区别| 艾滋病窗口期是什么意思| 铁饱和度低什么原因| 被强奸是什么感觉| 粉条炖什么好吃| 十月30号是什么星座| 75年属什么生肖| 鸦片鱼又叫什么鱼| 女性经常手淫有什么危害| 假象是什么意思| 吃什么东西能养胃| 业力什么意思| 金银花为什么叫忍冬| 寄居蟹吃什么| 2月10日什么星座| 脚上长水泡是什么原因引起的| 艾滋病是什么病| 复方北豆根氨酚那敏片是什么药| er是什么元素| 多普勒超声检查是什么| 青蛙长什么样| 放大镜不能放大的东西是什么| 718是什么星座| 球拍状胎盘对胎儿有什么影响| bull是什么意思| 金句是什么意思| 当归长什么样| 空腹吃西红柿有什么危害| 怕冷是什么原因| 心慌吃什么药效果好| 眼窝凹陷是什么原因| 高压低是什么原因| 关羽的武器叫什么| 吸入物变应原筛查是什么| 12点半是什么时辰| 什么安神助睡眠| 三十六计第一计是什么| 胆固醇高是什么症状| 相什么并什么| u是什么元素| 猹是什么| 1991是什么年| 女性口苦是什么原因引起的| 走婚是什么意思| 肠鸣是什么原因引起的| 什么的尘土| 什么补气血| 老鼠最怕什么气味驱赶| hcr是什么意思| 偏食是什么意思| 茉莉茶叶属于什么茶| 胃炎吃什么药效果好| 结婚10周年是什么婚| 感染艾滋病有什么症状| 43岁属什么| 蜂蜜吃了有什么好处| 口腔溃疡挂什么科就诊| 腰椎盘突出挂什么科| 水晶粉是什么粉| 蜂窝数据什么意思| jeans是什么品牌| 蛇年五行属什么| 泌尿外科是看什么的| 68年猴五行属什么| 目赤肿痛吃什么药最好| 外阴红肿瘙痒用什么药| 血脂挂什么科| 肝火旺盛吃什么| 霞字五行属什么| 器质性心脏病是什么意思| 血管瘤是什么样子的图| 晚上扫地有什么说法| 什么是疱疹怎么得的| 霸王龙的后代是什么| 放行是什么意思| 举的部首是什么| 鱼香肉丝是什么菜系| 阿托伐他汀钙片有什么副作用| 儿童尿频什么原因引起的| 脚臭用什么泡脚效果好| 什么是疱疹怎么得的| 睡觉流眼泪是什么原因| gg是什么牌子| 生日礼物送什么| 额头长痘痘什么原因| 肚子疼看什么科| 林彪为什么叛变| 送巧克力代表什么意思| 增致牛仔属于什么档次| 25羟维生素d测定是什么| 诗意是什么意思| 钙片什么时间吃最好| 报应是什么意思| 草字头加果念什么| 处女什么意思| 辄是什么意思| PA医学上是什么意思| 葫芦娃的爷爷叫什么| 眼睛皮痒是什么原因| buy是什么意思| 孕妇缺铁对胎儿有什么影响| 胃不好适合吃什么食物| 前列腺是什么意思| 睡觉就做梦是什么原因| 手腕疼痛挂什么科| 什么叫刺身| 自来水养鱼为什么会死| dm是什么意思| 软绵绵的什么| 柳枝什么的什么的| 息肉是什么病| 游车河什么意思| 氯偏低是什么原因| 梦见抓甲鱼是什么意思| 指甲变空是什么原因| 什么腿| 女性更年期吃什么药| 大公鸡是什么牌子| 十加一笔是什么字| 槟榔吃多了有什么危害| cm和mm有什么区别| 结节性硬化症是什么病| 狗叫是什么意思| 急性结肠炎什么症状| 猫吃什么| 大便隐血阳性是什么意思| 生鱼又叫什么鱼| 拘留所和看守所有什么区别| 脚掌发红是什么原因| 甲钴胺是什么药| 薄荷不能和什么一起吃| 蜗牛爱吃什么食物| 眼疖子用什么药| 深喉是什么意思| 息肉是什么东西| 心房纤颤是什么意思| 姨妈少是什么原因怎么办| 病毒长什么样子| 10pcs是什么意思| 榴莲对子宫有什么好处| 股骨头疼痛吃什么药| 皮肤起小水泡很痒是什么原因| 烧心吃什么药| 吃什么可以让奶水增多| 大姨妈血块多是什么原因| 布洛芬属于什么类药物| 12月10日什么星座| 心是什么意思| 什么园| 黑豆不能和什么一起吃| 窗口是什么意思| 猴魁属于什么茶| michaelkors是什么牌子| 抽血化验能查出什么| 一厢情愿是什么生肖| 什么是三好学生| 旁风草长什么样| 晚上喝红酒配什么小吃| 牙根吸收是什么意思| 风什么意思| 梦见死去的亲人是什么意思| 牙疼挂什么科| 大拇指麻木是什么原因| 撕票是什么意思| 不易是什么意思| 曹操为什么要杀华佗| 睾丸痒用什么药膏最好| 青光眼用什么眼药水| 什么样的房子不能住人脑筋急转弯| elle中文叫什么| 刻意是什么意思| 红细胞压积偏高是什么原因| 缺爱是什么意思| 百度Jump to content

青少年流鼻血是什么原因引起的

From Wikipedia, the free encyclopedia
百度   第二,中国的体制优势决定了我们对损失的真实承受力也要高于美国社会。

In differential topology, the jet bundle is a certain construction that makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant form. Jets may also be seen as the coordinate free versions of Taylor expansions.

Historically, jet bundles are attributed to Charles Ehresmann, and were an advance on the method (prolongation) of élie Cartan, of dealing geometrically with higher derivatives, by imposing differential form conditions on newly introduced formal variables. Jet bundles are sometimes called sprays, although sprays usually refer more specifically to the associated vector field induced on the corresponding bundle (e.g., the geodesic spray on Finsler manifolds.)

Since the early 1980s, jet bundles have appeared as a concise way to describe phenomena associated with the derivatives of maps, particularly those associated with the calculus of variations.[1] Consequently, the jet bundle is now recognized as the correct domain for a geometrical covariant field theory and much work is done in general relativistic formulations of fields using this approach.

Jets

[edit]

Suppose M is an m-dimensional manifold and that (E, π, M) is a fiber bundle. For pM, let Γ(p) denote the set of all local sections whose domain contains p. Let ?? be a multi-index (an m-tuple of non-negative integers, not necessarily in ascending order), then define:

Define the local sections σ, η ∈ Γ(p) to have the same r-jet at p if

The relation that two maps have the same r-jet is an equivalence relation. An r-jet is an equivalence class under this relation, and the r-jet with representative σ is denoted . The integer r is also called the order of the jet, p is its source and σ(p) is its target.

Jet manifolds

[edit]

The r-th jet manifold of π is the set

We may define projections πr and πr,0 called the source and target projections respectively, by

If 1 ≤ kr, then the k-jet projection is the function πr,k defined by

From this definition, it is clear that πr = π o πr,0 and that if 0 ≤ mk, then πr,m = πk,m o πr,k. It is conventional to regard πr,r as the identity map on J?r(π) and to identify J?0(π) with E.

The functions πr,k, πr,0 and πr are smooth surjective submersions.

A coordinate system on E will generate a coordinate system on J?r(π). Let (U, u) be an adapted coordinate chart on E, where u = (xi, uα). The induced coordinate chart (Ur, ur) on J?r(π) is defined by

where

and the functions known as the derivative coordinates:

Given an atlas of adapted charts (U, u) on E, the corresponding collection of charts (U?r, u?r) is a finite-dimensional C atlas on J?r(π).

Jet bundles

[edit]

Since the atlas on each defines a manifold, the triples , and all define fibered manifolds. In particular, if is a fiber bundle, the triple defines the r-th jet bundle of π.

If W ? M is an open submanifold, then

If pM, then the fiber is denoted .

Let σ be a local section of π with domain W ? M. The r-th jet prolongation of σ is the map defined by

Note that , so really is a section. In local coordinates, is given by

We identify with .

Algebro-geometric perspective

[edit]

An independently motivated construction of the sheaf of sections is given.

Consider a diagonal map , where the smooth manifold is a locally ringed space by for each open . Let be the ideal sheaf of , equivalently let be the sheaf of smooth germs which vanish on for all . The pullback of the quotient sheaf from to by is the sheaf of k-jets.[2]

The direct limit of the sequence of injections given by the canonical inclusions of sheaves, gives rise to the infinite jet sheaf . Observe that by the direct limit construction it is a filtered ring.

Example

[edit]

If π is the trivial bundle (M × R, pr1, M), then there is a canonical diffeomorphism between the first jet bundle and T*M × R. To construct this diffeomorphism, for each σ in write .

Then, whenever pM

Consequently, the mapping

is well-defined and is clearly injective. Writing it out in coordinates shows that it is a diffeomorphism, because if (xi, u) are coordinates on M × R, where u = idR is the identity coordinate, then the derivative coordinates ui on J1(π) correspond to the coordinates ?i on T*M.

Likewise, if π is the trivial bundle (R × M, pr1, R), then there exists a canonical diffeomorphism between and R × TM.

Contact structure

[edit]

The space Jr(π) carries a natural distribution, that is, a sub-bundle of the tangent bundle TJr(π)), called the Cartan distribution. The Cartan distribution is spanned by all tangent planes to graphs of holonomic sections; that is, sections of the form jrφ for φ a section of π.

The annihilator of the Cartan distribution is a space of differential one-forms called contact forms, on Jr(π). The space of differential one-forms on Jr(π) is denoted by and the space of contact forms is denoted by . A one form is a contact form provided its pullback along every prolongation is zero. In other words, is a contact form if and only if

for all local sections σ of π over M.

The Cartan distribution is the main geometrical structure on jet spaces and plays an important role in the geometric theory of partial differential equations. The Cartan distributions are completely non-integrable. In particular, they are not involutive. The dimension of the Cartan distribution grows with the order of the jet space. However, on the space of infinite jets J the Cartan distribution becomes involutive and finite-dimensional: its dimension coincides with the dimension of the base manifold M.

Example

[edit]

Consider the case (E, π, M), where E ? R2 and M ? R. Then, (J1(π), π, M) defines the first jet bundle, and may be coordinated by (x, u, u1), where

for all pM and σ in Γp(π). A general 1-form on J1(π) takes the form

A section σ in Γp(π) has first prolongation

Hence, (j1σ)*θ can be calculated as

This will vanish for all sections σ if and only if c = 0 and a = ?bσ′(x). Hence, θ = b(x, u, u10 must necessarily be a multiple of the basic contact form θ0 = du ? u1dx. Proceeding to the second jet space J2(π) with additional coordinate u2, such that

a general 1-form has the construction

This is a contact form if and only if

which implies that e = 0 and a = ?bσ′(x) ? cσ′′(x). Therefore, θ is a contact form if and only if

where θ1 = du1 ? u2dx is the next basic contact form (Note that here we are identifying the form θ0 with its pull-back to J2(π)).

In general, providing x, uR, a contact form on Jr+1(π) can be written as a linear combination of the basic contact forms

where

Similar arguments lead to a complete characterization of all contact forms.

In local coordinates, every contact one-form on Jr+1(π) can be written as a linear combination

with smooth coefficients of the basic contact forms

|I| is known as the order of the contact form . Note that contact forms on Jr+1(π) have orders at most r. Contact forms provide a characterization of those local sections of πr+1 which are prolongations of sections of π.

Let ψ ∈ ΓW(πr+1), then ψ = jr+1σ where σ ∈ ΓW(π) if and only if

Vector fields

[edit]

A general vector field on the total space E, coordinated by , is

A vector field is called horizontal, meaning that all the vertical coefficients vanish, if = 0.

A vector field is called vertical, meaning that all the horizontal coefficients vanish, if ρi = 0.

For fixed (x, u), we identify

having coordinates (x, u, ρi, φα), with an element in the fiber TxuE of TE over (x, u) in E, called a tangent vector in TE. A section

is called a vector field on E with

and ψ in Γ(TE).

The jet bundle Jr(π) is coordinated by . For fixed (x, u, w), identify

having coordinates

with an element in the fiber of TJr(π) over (x, u, w)Jr(π), called a tangent vector in TJr(π). Here,

are real-valued functions on Jr(π). A section

is a vector field on Jr(π), and we say

Partial differential equations

[edit]

Let (E, π, M) be a fiber bundle. An r-th order partial differential equation on π is a closed embedded submanifold S of the jet manifold Jr(π). A solution is a local section σ ∈ ΓW(π) satisfying , for all p in M.

Consider an example of a first order partial differential equation.

Example

[edit]

Let π be the trivial bundle (R2 × R, pr1, R2) with global coordinates (x1, x2, u1). Then the map F : J1(π) → R defined by

gives rise to the differential equation

which can be written

The particular

has first prolongation given by

and is a solution of this differential equation, because

and so for every pR2.

Jet prolongation

[edit]

A local diffeomorphism ψ : Jr(π) → Jr(π) defines a contact transformation of order r if it preserves the contact ideal, meaning that if θ is any contact form on Jr(π), then ψ*θ is also a contact form.

The flow generated by a vector field Vr on the jet space Jr(π) forms a one-parameter group of contact transformations if and only if the Lie derivative of any contact form θ preserves the contact ideal.

Let us begin with the first order case. Consider a general vector field V1 on J1(π), given by

We now apply to the basic contact forms and expand the exterior derivative of the functions in terms of their coordinates to obtain:

Therefore, V1 determines a contact transformation if and only if the coefficients of dxi and in the formula vanish. The latter requirements imply the contact conditions

The former requirements provide explicit formulae for the coefficients of the first derivative terms in V1:

where

denotes the zeroth order truncation of the total derivative Di.

Thus, the contact conditions uniquely prescribe the prolongation of any point or contact vector field. That is, if satisfies these equations, Vr is called the r-th prolongation of V to a vector field on Jr(π).

These results are best understood when applied to a particular example. Hence, let us examine the following.

Example

[edit]

Consider the case (E, π, M), where E ? R2 and M ? R. Then, (J1(π), π, E) defines the first jet bundle, and may be coordinated by (x, u, u1), where

for all pM and σ in Γp(π). A contact form on J1(π) has the form

Consider a vector V on E, having the form

Then, the first prolongation of this vector field to J1(π) is

If we now take the Lie derivative of the contact form with respect to this prolonged vector field, we obtain

Hence, for preservation of the contact ideal, we require

And so the first prolongation of V to a vector field on J1(π) is

Let us also calculate the second prolongation of V to a vector field on J2(π). We have as coordinates on J2(π). Hence, the prolonged vector has the form

The contact forms are

To preserve the contact ideal, we require

Now, θ has no u2 dependency. Hence, from this equation we will pick up the formula for ρ, which will necessarily be the same result as we found for V1. Therefore, the problem is analogous to prolonging the vector field V1 to J2(π). That is to say, we may generate the r-th prolongation of a vector field by recursively applying the Lie derivative of the contact forms with respect to the prolonged vector fields, r times. So, we have

and so

Therefore, the Lie derivative of the second contact form with respect to V2 is

Hence, for to preserve the contact ideal, we require

And so the second prolongation of V to a vector field on J2(π) is

Note that the first prolongation of V can be recovered by omitting the second derivative terms in V2, or by projecting back to J1(π).

Infinite jet spaces

[edit]

The inverse limit of the sequence of projections gives rise to the infinite jet space J(π). A point is the equivalence class of sections of π that have the same k-jet in p as σ for all values of k. The natural projection π maps into p.

Just by thinking in terms of coordinates, J(π) appears to be an infinite-dimensional geometric object. In fact, the simplest way of introducing a differentiable structure on J(π), not relying on differentiable charts, is given by the differential calculus over commutative algebras. Dual to the sequence of projections of manifolds is the sequence of injections of commutative algebras. Let's denote simply by . Take now the direct limit of the 's. It will be a commutative algebra, which can be assumed to be the smooth functions algebra over the geometric object J(π). Observe that , being born as a direct limit, carries an additional structure: it is a filtered commutative algebra.

Roughly speaking, a concrete element will always belong to some , so it is a smooth function on the finite-dimensional manifold Jk(π) in the usual sense.

Infinitely prolonged PDEs

[edit]

Given a k-th order system of PDEs E ? Jk(π), the collection I(E) of vanishing on E smooth functions on J(π) is an ideal in the algebra , and hence in the direct limit too.

Enhance I(E) by adding all the possible compositions of total derivatives applied to all its elements. This way we get a new ideal I of which is now closed under the operation of taking total derivative. The submanifold E(∞) of J(π) cut out by I is called the infinite prolongation of E.

Geometrically, E(∞) is the manifold of formal solutions of E. A point of E(∞) can be easily seen to be represented by a section σ whose k-jet's graph is tangent to E at the point with arbitrarily high order of tangency.

Analytically, if E is given by φ = 0, a formal solution can be understood as the set of Taylor coefficients of a section σ in a point p that make vanish the Taylor series of at the point p.

Most importantly, the closure properties of I imply that E(∞) is tangent to the infinite-order contact structure on J(π), so that by restricting to E(∞) one gets the diffiety , and can study the associated Vinogradov (C-spectral) sequence.

Remark

[edit]

This article has defined jets of local sections of a bundle, but it is possible to define jets of functions f: MN, where M and N are manifolds; the jet of f then just corresponds to the jet of the section

grf: MM × N
grf(p) = (p, f(p))

(grf is known as the graph of the function f) of the trivial bundle (M × N, π1, M). However, this restriction does not simplify the theory, as the global triviality of π does not imply the global triviality of π1.

See also

[edit]

References

[edit]
  1. ^ Krupka, Demeter (2015). Introduction to Global Variational Geometry. Atlantis Press. ISBN 978-94-6239-073-7.
  2. ^ Vakil, Ravi (August 25, 1998). "A beginner's guide to jet bundles from the point of view of algebraic geometry" (PDF). Retrieved June 25, 2017.

Further reading

[edit]
  • Ehresmann, C., "Introduction à la théorie des structures infinitésimales et des pseudo-groupes de Lie." Geometrie Differentielle, Colloq. Inter. du Centre Nat. de la Recherche Scientifique, Strasbourg, 1953, 97-127.
  • Kolá?, I., Michor, P., Slovák, J., Natural operations in differential geometry. Springer-Verlag: Berlin Heidelberg, 1993. ISBN 3-540-56235-4, ISBN 0-387-56235-4.
  • Saunders, D. J., "The Geometry of Jet Bundles", Cambridge University Press, 1989, ISBN 0-521-36948-7
  • Krasil'shchik, I. S., Vinogradov, A. M., [et al.], "Symmetries and conservation laws for differential equations of mathematical physics", Amer. Math. Soc., Providence, RI, 1999, ISBN 0-8218-0958-X.
  • Olver, P. J., "Equivalence, Invariants and Symmetry", Cambridge University Press, 1995, ISBN 0-521-47811-1


各什么各什么 开心果是什么意思 柔五行属什么 长期喝蜂蜜水有什么好处 黑匣子是什么颜色
潭柘寺求什么最灵验 山竹吃了有什么好处 预谋是什么意思 否极泰来是什么生肖 脸色发红什么原因
肌酐高吃什么药好 雍正为什么只在位13年 月经推迟是什么原因 月经不调是什么原因造成的 身体发麻是什么原因
做可乐鸡翅用什么可乐 1月9日什么星座 经常早上肚子疼是什么原因 什么有作为 善罢甘休的意思是什么
三个句号代表什么意思hcv8jop2ns2r.cn 贞操是什么hcv9jop2ns0r.cn 什么样的人不能吃海参imcecn.com 起酥油是什么油cl108k.com 女人八卦是什么意思hcv9jop1ns1r.cn
痴汉是什么意思sanhestory.com 双侧肾盂分离是什么意思hcv9jop2ns5r.cn 隐血十一是什么意思bjcbxg.com 是什么病hcv9jop0ns7r.cn 首级是什么意思hcv7jop9ns8r.cn
白内障的主要症状是什么hcv9jop2ns6r.cn 清洁度二度是什么意思hcv8jop0ns9r.cn abby是什么意思qingzhougame.com 大学辅导员是干什么的hcv9jop6ns9r.cn 白舌苔是什么原因wmyky.com
抽烟为什么会上瘾hcv9jop2ns8r.cn 剑齿虎为什么会灭绝hcv9jop3ns8r.cn 宫腔线不清晰什么意思hcv8jop0ns7r.cn 口若悬河什么意思creativexi.com 孕妇前三个月吃什么对胎儿好hcv8jop4ns3r.cn
百度