哮喘是什么| 安全期是什么时候| 中央委员什么级别| hpv去医院挂什么科| 尼莫地平片治什么病| 幽会是什么意思| 寿司醋可以用什么代替| 格桑花什么时候开花| 周期是什么意思| 秦二世为什么姓胡| 女人得性瘾什么症状| 三个土是什么字| 绝经一般在什么年龄| 打车费计入什么科目| 废品收入计入什么科目| 副省长是什么级别| 肺热会引起什么症状| 失眠可以吃什么药| 的确良是什么面料| 巨蟹座喜欢什么星座| 87年五行属什么| 内分泌科属于什么科| 支气管炎吃什么药最有效| 后背疼应该挂什么科| 脸热发红是什么原因| 乌龟下蛋预示着什么| vte是什么意思| 面包糠是什么做的| 右肺中叶小结节是什么意思严重吗| 肾虚挂什么科| 左肩后背疼是什么原因| 松鼠桂鱼是什么鱼| 2019属什么| 淼念什么| 狗狗能吃什么水果| ph值低是什么原因| 疳积是什么病| 骨头疼是什么原因| 霍霍是什么意思| dhc是什么| 元五行属性是什么| 女性去泰国要注意什么| 脑血管堵塞会有什么后果| 楷字五行属什么| 七个小矮人分别叫什么| 糕面是什么面| 2025是什么生肖年| 巳时是什么时辰| 中国最毒的蛇是什么蛇| 姓名字号是什么意思| 腹部ct能检查出什么| 氨酶偏高是什么意思| 心里难受想吐是什么原因| 什么头蛇尾| 胎盘早剥是什么意思| 撕裂性骨折是什么意思| 11月20是什么星座| 走读生是什么意思| pv什么意思| 眉什么目什么| 心里害怕紧张恐惧是什么症状| 防中暑喝什么水| 长期拉肚子是什么原因| 微笑是什么意思| 五谷丰登是什么生肖| 间质性肺病是什么意思| 什么花不用浇水| 梦见老公出轨什么意思| 天天做梦是什么原因| 为什么减肥不建议喝粥| 做尿常规挂什么科| 什么是天赋| 吃李子有什么好处| 红薯开花预示着什么| 沉香有什么作用| 无厘头是什么意思| 冰箱保鲜室不制冷是什么原因| 小苏打学名叫什么| 正佳广场有什么好玩的| 茶壶里煮饺子的歇后语是什么| 黑枣是什么枣| 经期缩短是什么原因| 一什么篮子| design是什么牌子| 脂肪最怕什么| 谅解什么意思| 胎儿双肾盂分离是什么意思| 孕妇吸氧对胎儿有什么好处| 什么是食品安全| 即兴表演是什么意思| 慢性非萎缩性胃炎伴糜烂是什么意思| 俄罗斯的国花是什么花| 什么交加| 梦见好多南瓜是什么意思| 孩子肚子疼是什么原因| spyder是什么品牌| 苹果熬水喝有什么功效| 老司机什么意思| 瘰疬是什么意思| 作恶多端是什么意思| 羊肉水饺配什么菜好吃| 尿分叉是什么原因| 骶椎隐裂是什么意思| 表姐的孩子叫我什么| 喝可乐有什么危害| pc是什么| 副乳有什么危害吗| 做hpv检查前要注意什么| 怀孕的肚子是什么样的| 傧相是什么意思| 龘读什么| 螃蟹不能和什么水果一起吃| 武夷山在什么地方| 欲情故纵是什么意思| 瑞五行属性是什么| 什么是pin| 肾炎可以吃什么水果| 风花雪月什么意思| 上海青是什么菜| pm是什么的缩写| 525什么星座| 什么食物补肾| 熬夜流鼻血是什么原因| 正常的白带是什么样的| 黄精有什么作用和功效| 惨不忍睹是什么意思| 花胶有什么功效| 辽源有什么好玩的地方| 替拉依是什么药| 薏苡仁是什么| 芽轴发育成什么| 肛门不舒服是什么原因| 魁罡贵人是什么意思| 食道癌有什么症状| 从政是什么意思| 农历五月初五是什么节| 属鸡与什么属相最配| 什么是滑档| 雪媚娘是什么| 眼睛干痒用什么眼药水| jeep衣服什么档次| 合胞病毒用什么药最好| 为什么美国支持以色列| 不拘小节是什么意思| 蒂芙尼属于什么档次| 27年属什么生肖| 臻字五行属什么的| 咽喉炎是什么症状| 身上长疣是什么原因| 为什么很困却睡不着| 做梦梦到乌龟是什么预兆| 鼻子下面长痘痘是什么原因引起的| 晚安安是什么意思| 姊妹是什么意思| 非食健字是什么意思| 月经前一周是什么期| 看喉咙挂什么科| mlb是什么牌子中文名| 流金岁月什么意思| 梦见家里着火了是什么征兆| 红枣和灰枣有什么区别| 小针刀是什么| 狐仙一般找什么人上身| 加鸡腿什么意思| 山楂和什么一起泡水喝| 龙代表什么象征意义| 迅雷不及掩耳之势是什么意思| 十一朵玫瑰花代表什么意思| 级配是什么意思| 太容易出汗是什么原因| 喉咙痛吃什么药效果最好| 严重失眠挂什么科| 软组织密度影什么意思| 假菌丝是什么意思| 半什么半什么的成语| 胰腺炎能吃什么| 儿童尿路感染吃什么药| x光是什么| 认真地什么| 口苦口干吃什么药最好| 处女膜破了有什么影响| 苹果绿是什么颜色| 微量蛋白尿高说明什么| 喉咙痛挂什么科| 合成碳硅石是什么| 小儿麻痹是什么病| 办理护照需要什么手续| style是什么意思| 身上有异味是什么原因| 许久是什么意思| 吃什么睡眠最快| 润什么意思| 腿水肿是什么原因引起的| 勃艮第红是什么颜色| 螳螂吃什么东西| 肌酸激酶高是什么病| 文曲星是什么神仙| x射线是什么| 深紫色配什么颜色好看| 八月2号是什么星座| 火车不能带什么| 脑干出血是什么原因造成的| 胶体是什么| 人得了猫藓用什么药膏| 二战时期是什么时候| 妇科炎症用什么药| 甲苯是什么东西| 7月24日是什么日子| 属羊是什么命| 脑膜炎是什么| 查血脂挂什么科| 西瓜又什么又什么填空| 怀孕后吃避孕药有什么后果| 百忧解是什么药| 属狗的和什么属相最配| 什么洗发水去屑效果好| 屁股长痣代表什么| 大便潜血弱阳性是什么原因| 吃什么养肾| 热敷眼睛有什么好处| 砭石是什么石头| 舌苔厚白吃什么中成药| 什么是子宫憩室| 昱读什么| 腹泻挂什么科| 人为什么会得肿瘤| 反胃是什么原因引起的| 高血压降不下来是什么原因| 什么是表达方式| 做梦和别人吵架意味着什么| 豌豆什么时候种最好| 1995是什么年| 舅舅的孩子叫什么| 西米是什么米| 打玻尿酸有什么危害| 宁静是什么民族| 丙子日是什么意思| 不孕不育的症状是什么| 家里有小蜘蛛预示什么| 高专是什么| 人为什么会困| 血糖高可以吃什么零食| 癌症病人吃什么| 血红蛋白偏高说明了什么| 夏天有什么植物| 望远镜10x50什么意思| 什么能美白皮肤而且效果快| 蜂蜜加白醋有什么功效| 十一月一号是什么星座| 知了有什么功效与作用| tu是什么意思| 什么竹水果| 袖珍人是什么意思| 和什么细什么的成语| 貔貅是什么生肖| acth是什么| 跳舞有什么好处| 无毒不丈夫是什么意思| 检查肝脏挂什么科| 声声慢是什么意思| 木可以加什么偏旁| vb是什么意思| 两个马念什么字| 梦见掉粪坑里了是什么意思| 百度Jump to content

京城迎来赏花佳期 赏花高峰持续到5月中旬

From Wikipedia, the free encyclopedia
百度   正在干活的刘先生,突然听见在旁边玩耍的儿子哇哇大哭起来,家人赶快让豆豆张嘴,发现他的口腔已经发黑,不知何时,豆豆将火碱吞进了肚子里。

In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.

Motivation

[edit]

Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system.[1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a Hamiltonian function .[2] So we require a linear map from the tangent manifold to the cotangent manifold , or equivalently, an element of . Letting denote a section of , the requirement that be non-degenerate ensures that for every differential there is a unique corresponding vector field such that . Since one desires the Hamiltonian to be constant along flow lines, one should have , which implies that is alternating and hence a 2-form. Finally, one makes the requirement that should not change under flow lines, i.e. that the Lie derivative of along vanishes. Applying Cartan's formula, this amounts to (here is the interior product):

so that, on repeating this argument for different smooth functions such that the corresponding span the tangent space at each point the argument is applied at, we see that the requirement for the vanishing Lie derivative along flows of corresponding to arbitrary smooth is equivalent to the requirement that ω should be closed.

Definition

[edit]

A symplectic form on a smooth manifold is a closed non-degenerate differential 2-form .[3][4] Here, non-degenerate means that for every point , the skew-symmetric pairing on the tangent space defined by is non-degenerate. That is to say, if there exists an such that for all , then . Since in odd dimensions, skew-symmetric matrices are always singular, the requirement that be nondegenerate implies that has an even dimension.[3][4] The closed condition means that the exterior derivative of vanishes. A symplectic manifold is a pair where is a smooth manifold and is a symplectic form. Assigning a symplectic form to is referred to as giving a symplectic structure.

Examples

[edit]

Symplectic vector spaces

[edit]

Let be a basis for We define our symplectic form on this basis as follows:

In this case the symplectic form reduces to a simple quadratic form. If denotes the identity matrix then the matrix, , of this quadratic form is given by the block matrix:

Cotangent bundles

[edit]

Let be a smooth manifold of dimension . Then the total space of the cotangent bundle has a natural symplectic form, called the Poincaré two-form or the canonical symplectic form

Here are any local coordinates on and are fibrewise coordinates with respect to the cotangent vectors . Cotangent bundles are the natural phase spaces of classical mechanics. The point of distinguishing upper and lower indexes is driven by the case of the manifold having a metric tensor, as is the case for Riemannian manifolds. Upper and lower indexes transform contra and covariantly under a change of coordinate frames. The phrase "fibrewise coordinates with respect to the cotangent vectors" is meant to convey that the momenta are "soldered" to the velocities . The soldering is an expression of the idea that velocity and momentum are colinear, in that both move in the same direction, and differ by a scale factor.

K?hler manifolds

[edit]

A K?hler manifold is a symplectic manifold equipped with a compatible integrable complex structure. They form a particular class of complex manifolds. A large class of examples come from complex algebraic geometry. Any smooth complex projective variety has a symplectic form which is the restriction of the Fubini—Study form on the projective space .

Almost-complex manifolds

[edit]

Riemannian manifolds with an -compatible almost complex structure are termed almost-complex manifolds. They generalize K?hler manifolds, in that they need not be integrable. That is, they do not necessarily arise from a complex structure on the manifold.

Lagrangian and other submanifolds

[edit]

There are several natural geometric notions of submanifold of a symplectic manifold :

  • Symplectic submanifolds of (potentially of any even dimension) are submanifolds such that is a symplectic form on .
  • Isotropic submanifolds are submanifolds where the symplectic form restricts to zero, i.e. each tangent space is an isotropic subspace of the ambient manifold's tangent space. Similarly, if each tangent subspace to a submanifold is co-isotropic (the dual of an isotropic subspace), the submanifold is called co-isotropic.
  • Lagrangian submanifolds of a symplectic manifold are submanifolds where the restriction of the symplectic form to is vanishing, i.e. and . Lagrangian submanifolds are the maximal isotropic submanifolds.

One major example is that the graph of a symplectomorphism in the product symplectic manifold (M × M, ω × ?ω) is Lagrangian. Their intersections display rigidity properties not possessed by smooth manifolds; the Arnold conjecture gives the sum of the submanifold's Betti numbers as a lower bound for the number of self intersections of a smooth Lagrangian submanifold, rather than the Euler characteristic in the smooth case.

Examples

[edit]

Let have global coordinates labelled . Then, we can equip with the canonical symplectic form

There is a standard Lagrangian submanifold given by . The form vanishes on because given any pair of tangent vectors we have that To elucidate, consider the case . Then, and . Notice that when we expand this out

both terms we have a factor, which is 0, by definition.

Example: Cotangent bundle

[edit]

The cotangent bundle of a manifold is locally modeled on a space similar to the first example. It can be shown that we can glue these affine symplectic forms hence this bundle forms a symplectic manifold. A less trivial example of a Lagrangian submanifold is the zero section of the cotangent bundle of a manifold. For example, let

Then, we can present as

where we are treating the symbols as coordinates of . We can consider the subset where the coordinates and , giving us the zero section. This example can be repeated for any manifold defined by the vanishing locus of smooth functions and their differentials .

Example: Parametric submanifold

[edit]

Consider the canonical space with coordinates . A parametric submanifold of is one that is parameterized by coordinates such that

This manifold is a Lagrangian submanifold if the Lagrange bracket vanishes for all . That is, it is Lagrangian if

for all . This can be seen by expanding

in the condition for a Lagrangian submanifold . This is that the symplectic form must vanish on the tangent manifold ; that is, it must vanish for all tangent vectors:

for all . Simplify the result by making use of the canonical symplectic form on :

and all others vanishing.

As local charts on a symplectic manifold take on the canonical form, this example suggests that Lagrangian submanifolds are relatively unconstrained. The classification of symplectic manifolds is done via Floer homology—this is an application of Morse theory to the action functional for maps between Lagrangian submanifolds. In physics, the action describes the time evolution of a physical system; here, it can be taken as the description of the dynamics of branes.

Example: Morse theory

[edit]

Another useful class of Lagrangian submanifolds occur in Morse theory. Given a Morse function and for a small enough one can construct a Lagrangian submanifold given by the vanishing locus . For a generic Morse function we have a Lagrangian intersection given by .

Special Lagrangian submanifolds

[edit]

In the case of K?hler manifolds (or Calabi–Yau manifolds) we can make a choice on as a holomorphic n-form, where is the real part and imaginary. A Lagrangian submanifold is called special if in addition to the above Lagrangian condition the restriction to is vanishing. In other words, the real part restricted on leads the volume form on . The following examples are known as special Lagrangian submanifolds,

  1. complex Lagrangian submanifolds of hyperk?hler manifolds,
  2. fixed points of a real structure of Calabi–Yau manifolds.

The SYZ conjecture deals with the study of special Lagrangian submanifolds in mirror symmetry; see (Hitchin 1999).

The Thomas–Yau conjecture predicts that the existence of a special Lagrangian submanifolds on Calabi–Yau manifolds in Hamiltonian isotopy classes of Lagrangians is equivalent to stability with respect to a stability condition on the Fukaya category of the manifold.

Lagrangian fibration

[edit]

A Lagrangian fibration of a symplectic manifold M is a fibration where all of the fibres are Lagrangian submanifolds. Since M is even-dimensional we can take local coordinates (p1,...,pn, q1,...,qn), and by Darboux's theorem the symplectic form ω can be, at least locally, written as ω = ∑ dpk ∧ dqk, where d denotes the exterior derivative and ∧ denotes the exterior product. This form is called the Poincaré two-form or the canonical two-form. Using this set-up we can locally think of M as being the cotangent bundle and the Lagrangian fibration as the trivial fibration This is the canonical picture.

Lagrangian mapping

[edit]

Let L be a Lagrangian submanifold of a symplectic manifold (K,ω) given by an immersion i : L ? K (i is called a Lagrangian immersion). Let π : K ? B give a Lagrangian fibration of K. The composite (π ° i) : L ? K ? B is a Lagrangian mapping. The critical value set of π ° i is called a caustic.

Two Lagrangian maps (π1 ° i1) : L1 ? K1 ? B1 and (π2 ° i2) : L2 ? K2 ? B2 are called Lagrangian equivalent if there exist diffeomorphisms σ, τ and ν such that both sides of the diagram given on the right commute, and τ preserves the symplectic form.[4] Symbolically:

where τ?ω2 denotes the pull back of ω2 by τ.

Special cases and generalizations

[edit]
  • A symplectic manifold is exact if the symplectic form is exact. For example, the cotangent bundle of a smooth manifold is an exact symplectic manifold if we use the canonical symplectic form. The area 2-form on the 2-sphere is a symplectic form that is not exact.
  • A symplectic manifold endowed with a metric that is compatible with the symplectic form is an almost K?hler manifold in the sense that the tangent bundle has an almost complex structure, but this need not be integrable.
  • Symplectic manifolds are special cases of a Poisson manifold.
  • A multisymplectic manifold of degree k is a manifold equipped with a closed nondegenerate k-form.[5]
  • A polysymplectic manifold is a Legendre bundle provided with a polysymplectic tangent-valued -form; it is utilized in Hamiltonian field theory.[6]

See also

[edit]

Citations

[edit]
  1. ^ Webster, Ben (9 January 2012). "What is a symplectic manifold, really?".
  2. ^ Cohn, Henry. "Why symplectic geometry is the natural setting for classical mechanics".
  3. ^ a b de Gosson, Maurice (2006). Symplectic Geometry and Quantum Mechanics. Basel: Birkh?user Verlag. p. 10. ISBN 3-7643-7574-4.
  4. ^ a b c Arnold, V. I.; Varchenko, A. N.; Gusein-Zade, S. M. (1985). The Classification of Critical Points, Caustics and Wave Fronts: Singularities of Differentiable Maps, Vol 1. Birkh?user. ISBN 0-8176-3187-9.
  5. ^ Cantrijn, F.; Ibort, L. A.; de León, M. (1999). "On the Geometry of Multisymplectic Manifolds". J. Austral. Math. Soc. Ser. A. 66 (3): 303–330. doi:10.1017/S1446788700036636.
  6. ^ Giachetta, G.; Mangiarotti, L.; Sardanashvily, G. (1999). "Covariant Hamiltonian equations for field theory". Journal of Physics. A32 (38): 6629–6642. arXiv:hep-th/9904062. Bibcode:1999JPhA...32.6629G. doi:10.1088/0305-4470/32/38/302. S2CID 204899025.

General and cited references

[edit]

Further reading

[edit]
拉肚子最好吃什么食物 才高八斗是什么动物 甲氧氯普胺片又叫什么 肺虚吃什么药 葛根粉吃了有什么作用
大创是什么 戊午五行属什么 长沙有什么好玩的 属鼠的幸运色是什么颜色 什么叫文化
大腿疼是什么原因 一什么不什么 皮肤变黑是什么原因 榴莲有什么功效 私募是做什么的
女人要矜持是什么意思 立flag是什么意思 李自成为什么会失败 薇诺娜适合什么年龄 1997年出生的属什么
开什么店最赚钱投资小qingzhougame.com s代表什么hcv9jop8ns1r.cn 居住证有什么用dajiketang.com 喝竹叶水有什么好处clwhiglsz.com 张一山和杨紫是什么关系hcv8jop3ns2r.cn
交叉感染是什么意思hcv8jop3ns5r.cn 失眠吃什么食物效果最好hcv9jop4ns5r.cn 梦见别人笑什么意思hcv8jop5ns1r.cn 7月1日是什么星座travellingsim.com 肾疼是什么症状clwhiglsz.com
做肠镜需要准备什么hcv9jop4ns2r.cn balea是什么牌子hcv8jop7ns1r.cn 乐山大佛是什么佛fenrenren.com 为什么做梦hcv9jop4ns1r.cn 凌晨三点是什么时辰hcv9jop7ns1r.cn
1310是什么意思hcv8jop6ns3r.cn 割包皮看什么科hcv8jop4ns7r.cn 淋巴结挂什么科hcv9jop7ns5r.cn 肺结核是什么引起的hcv9jop1ns1r.cn 排卵期同房后要注意什么zhiyanzhang.com
百度