dream car是什么意思| 女单读什么| 被老鼠咬了打什么疫苗| dhea是什么药| hpv81低危型阳性是什么意思| 皮肤敏感是什么意思| 手掌麻是什么原因引起的| 城隍庙求什么最灵| 泥鳅喜欢吃什么| 离婚需要带什么证件| 背部痒是什么原因| 转奶是什么意思| 心脏ct能检查出什么| 白带豆腐渣用什么药| 攒是什么意思| 硬度不够吃什么好| 儿童坐动车需要带什么证件| 什么是坏血病| 黑色素通过什么排出来| 按人中有什么作用| 绿茶喝多了有什么危害| 甲减吃什么| 胆囊壁毛糙是什么意思| 胆囊炎不能吃什么食物| 炙的意思是什么| 诸葛亮长什么样| 金脸银脸代表什么人物| 女性外痔擦什么药膏好| 吃什么养肝护肝最好| 做tct检查前要注意什么| 吃b族维生素有什么好处| tam是什么意思| 毛笔是用什么毛做的| 攀龙附凤是什么生肖| 眼镜轴位是什么| a代表什么意思| 得了乙肝有什么症状| 宫内膜回声欠均匀是什么意思| 能屈能伸是什么生肖| 三叉神经疼吃什么药| 拉肚子为什么肛门痛| 老婆的妹妹叫什么| 宝宝拉肚子能吃什么| 吃什么东西越吃越饿| 火字旁有什么字| 胳膊上的肌肉叫什么| 云南的特产是什么| 祖先是什么意思| 什么铜钱最值钱| 舌头痛什么原因| 蟑螂为什么会飞| ms.是什么意思| 黄片是什么| 卵巢分泌什么激素| 梦见老公怀孕什么预兆| 为什么早上起来恶心想吐| 10月4号什么星座| 大校相当于政府什么官| 低血压去药店买什么药| 支气管挂什么科| 疱疹性咽峡炎吃什么药| 鼠标dpi是什么| 吃什么能提升血小板| 骨质增生是什么原因引起的| 报晓是什么意思| 身体缺钠会有什么症状| 懿读什么| 宫颈多发潴留囊肿是什么意思| neighborhood是什么意思| 榴莲壳有什么作用| 冰糖里面为什么有白线| 婴儿为什么戴银不戴金| 放飞自我是什么意思| 猪五行属什么| 容易中暑是什么原因| 鳄鱼是什么动物| 卡司是什么意思| 取是什么意思| abo是什么| 脖子红是什么原因| 和氏璧是什么玉| 什么深似海| 八婆是什么意思| 梦见蜜蜂是什么预兆| 晚上睡觉脚冰凉是什么原因| 鱼最喜欢吃什么| 草朋刀是什么字| 功劳叶的别名叫什么| cu是什么元素| 霸天虎和威震天是什么关系| 肾不好会有什么症状| 灵犀是什么意思| 吃氨糖有什么好处和坏处| 五险一金指什么| 平方和是什么| 锌过量会引发什么症状| 什么是命运| 透明人什么意思| 意大利买什么包便宜| c肽是什么意思| 木槿是什么意思| 发动机抖动是什么原因| AT代表什么| 植树节是什么季节| 淋巴结反应性增生是什么意思| 强磁对人体有什么危害| 郁郁寡欢是什么意思| 手肿脚肿是什么原因引起的| 西瓜像什么| 什么是腐女| 缩阳是什么意思| 生猴子是什么意思| 检查怀孕挂什么科| 坐飞机要带什么证件| 牙龈炎吃什么药最有效| 腰椎间盘突出吃什么好| 助听器什么牌子好| 范畴的意思是什么| 女生真空是什么意思| 干咳 吃什么药| 什么药治咳嗽最好| 孕妇建档是什么意思| 三点水一个金读什么| 宫腔内稍高回声是什么意思| 自律性是什么意思| 杰瑞是什么品种的老鼠| 湿气到底是什么| 皮肤经常痒是什么原因| ecc是什么意思| 2035年属什么生肖| 皮下水肿是什么原因| 42岁属什么| 坐飞机不能带什么物品| 什么是备皮| 桐字五行属什么| 环状肉芽肿是什么皮肤病| coa什么意思| 醋精是什么| 打板是什么意思| 什么空调省电| 心衰吃什么药| 强迫症吃什么药效果好| 异国他乡的异是什么意思| zero什么意思| 血糖低怎么办吃什么补| 去医院看痘痘挂什么科| 坐是什么结构| 头总是昏昏沉沉的是什么原因| 处暑是什么时候| 花胶是什么东西| 包皮手术是什么| 话题是什么意思| 脚一直出汗是什么原因| 胚胎是什么意思| 什么样的人不能吃海参| 女生没有腋毛代表什么| 吞咽困难是什么原因| 丑时是什么命| 脚旁边骨头突出叫什么| 荷花是什么季节开的| 骨皮质扭曲是什么意思啊| 结婚前一天晚上的宴会叫什么| 机不可失的下一句是什么| 欧阳修是什么居士| 什么时候刮胡子最好| 油嘴滑舌是什么意思| 新生儿c反应蛋白高说明什么| 月经推后是什么原因| 94年的属什么| 耳垂长痘痘是什么原因| 入心是什么意思| 什么菜好吃| 下一年是什么生肖| 319是什么意思| boy是什么牌子| 月经推迟一个月不来什么原因| 做肉丸用什么淀粉最佳| 混合性皮肤用什么护肤品比较好| 黄瓜敷脸有什么功效与作用| 老年人吃饭老是噎着是什么原因| 卡哇伊是什么意思| 什么东西清肺止咳| 鼻子流黄水是什么原因| 肝功能2项是指什么| 出栏是什么意思| 喝杨梅酒对身体有什么好处| 舌头白腻厚苔是什么原因| 宫颈机能不全是什么原因造成的| 什么的小毛虫| 马齿苋煮水喝有什么功效| 三个耳读什么| 脖子上长个包挂什么科| 什么是膜性肾病| 囟门是什么| 布尔乔亚什么意思| 鼻甲肥大吃什么药最好| 五脏六腑是指什么| 转氨酶偏低是什么原因| 2002年是什么生肖| 老年人打嗝不止是什么原因| 什么时候测试怀孕最准确的| 莲字五行属什么| 女生胸部长什么样| pickup是什么意思| 大豆是什么豆| 睡觉磨牙是什么原因引起的| 龙须菜是什么菜| peony是什么意思| 女人为什么喜欢坏男人| 胃酸吃什么能马上缓解| rst是什么意思| 切除一侧输卵管对女性有什么影响| abo溶血症是什么意思| 蜱虫咬了什么症状| 人流前需要检查什么项目| 活泼开朗是什么意思| 3月11日是什么星座| 小孩急性肠胃炎吃什么药| 蛇生肖和什么生肖相配| 草莓是什么植物| 2.10是什么星座| 红红的苹果像什么句子| k金是什么金| 降火吃什么药| 蒲公英可以和什么一起泡水喝| 1889年属什么生肖| 严惩不贷是什么意思| 什么是节气| 蝎子喜欢吃什么| 霉菌是什么原因感染的| 高干是什么意思| 女人脾肾两虚吃什么好| 补肾吃什么东西效果最好| 胳膊肘发黑是什么原因| 办理护照需要什么| 高铁和地铁有什么区别| 脑内多发缺血灶是什么意思| 肝损害是什么意思| 洗涤心灵是什么意思| 大摇大摆是什么生肖| 鸟吃什么东西| 着凉肚子疼吃什么药| 重金属中毒喝什么解毒| 胎儿缺氧孕妇会有什么反应| 专科什么意思| 说话不清楚是什么原因导致的| 转氨酶高吃什么| 无情无义什么意思| 护士最高职称是什么| 婴儿口臭是什么原因引起的| 胃炎可以吃什么水果| 解肌是什么意思| 蜂蜡有什么用| 泌尿系感染吃什么药| 刷牙牙龈出血是什么原因| 什么牌子的蛋白质粉比较好| 全糖是什么意思| 室性期前收缩是什么意思| 用盐水泡脚有什么好处| 什么叫基因检测| 我一言难尽忍不住伤心是什么歌| 心肌炎做什么检查| 荨麻疹吃什么中药| 夏枯草是什么| 百度Jump to content

From Wikipedia, the free encyclopedia
百度 短短几年,一系列新理念新思想新战略及时提出,一系列重大方针政策密集出台,一系列重大举措相继推出,一系列重大工作务实推进,许多长期想解决而没有解决的难题得到解决,许多过去想办而没有办成的大事终于办成。

Quadratrix (red); snapshot of E and F having completed 60% of their motions

The quadratrix or trisectrix of Hippias (also called the quadratrix of Dinostratus)[1] is a curve which is created by a uniform motion. It is traced out by the crossing point of two lines, one moving by translation at a uniform speed, and the other moving by rotation around one of its points at a uniform speed. An alternative definition as a parametric curve leads to an equivalence between the quadratrix, the image of the Lambert W function, and the graph of the function .

The discovery of this curve is attributed to the Greek sophist Hippias of Elis, who used it around 420 BC in an attempt to solve the angle trisection problem, hence its name as a trisectrix. Later around 350 BC Dinostratus used it in an attempt to solve the problem of squaring the circle, hence its name as a quadratrix. Dinostratus's theorem, used in this attempt, relates an endpoint of the curve to the value of π. Both angle trisection and squaring the circle can be solved using a compass, a straightedge, and a given copy of this curve, but not by compass and straightedge alone. Although a dense set of points on the curve can be constructed by compass and straightedge, allowing these problems to be approximated, the whole curve cannot be constructed in this way.

The quadratrix of Hippias is a transcendental curve. It is one of several curves used in Greek mathematics for squaring the circle.

Definitions

[edit]

By moving lines

[edit]

Consider a square , and an inscribed quarter circle arc centered at with radius equal to the side of the square. Let be a point that travels with a constant angular velocity along the arc from to , and let be a point that travels simultaneously with a constant velocity from to along line segment , so that and start at the same time at and arrive at the same time at and . Then the quadratrix is defined as the locus of the intersection of line segment with the parallel line to through .[2][3]

Helicoid section

[edit]

If a line in three-dimensional space, perpendicular to and intersecting the -axis, rotates around this axis at a constant rate and simultaneously moves upward at a constant rate, it will trace out a helicoid. Pappus of Alexandria observed that intersecting this helicoid with an inclined plane and then projecting the curve of intersection onto the plane forms a quadratrix. For this construction, the inclined plane should be chosen to contain one of the generating lines of the helicoid.[4]

Parametric equation

[edit]
Quadratrix as a plane curve for side length , as given by the parametric formula for −∞ < t < ∞, with singularities when t is a nonzero integer multiple of π

If one places square with side length in a (Cartesian) coordinate system with the side on the -axis and with vertex at the origin, then the quadratrix is described by a parametric equation that gives the coordinates of each point on the curve as a function of a time parameter , as This description can also be used to give an analytical rather than a geometric definition of the quadratrix and to extend it beyond the interval. It does however remain undefined for values of that are integer multiples of , because is singular at those values. At , the singularity is removable by evaluating it using the limit , obtained as the ratio of the identity function and tangent function using l'H?pital's rule. Removing the singularity in this way and extending the parametric definition to negative values of yields a continuous planar curve on the range of parameter values .[5]

As the graph of a function

[edit]
Quadratrix as the graph of a function for

When reflected left to right and scaled appropriately in the complex plane, the quadratrix forms the image of the real axis for one branch of Lambert W function. The images for other branches consist of curves above and below the quadratrix, and the real axis itself.[6] To describe the quadratrix as the graph of an unbranched function, it is advantageous to swap the -axis and the -axis, that is to place the side on the -axis rather than on the -axis. Then the quadratrix forms the graph of the function[7][8]

Angle trisection

[edit]
Quadratrix compass
Angle trisection

The trisection of an arbitrary angle using only compass and straightedge is impossible. However, if the quadratrix is allowed as an additional tool, it is possible to divide an arbitrary angle into equal segments and hence a trisection () becomes possible. In practical terms the quadratrix can be drawn with the help of a template or a quadratrix compass (see drawing).[2][3][9]

By the definition of the quadratrix, the traversed angle is proportional to the traversed segment of the associated squares' side. Therefore, dividing that segment on the side into equal parts yields a partition of the associated angle into equal parts as well. Dividing the line segment into equal parts with ruler and compass is possible due to the intercept theorem.[10]

In more detail, to divide a given angle (at most 90°) into any desired number of equal parts, construct a square over its leg . The other leg of the angle intersects the quadratrix of the square in a point and the parallel line to the leg through intersects the side of the square in . Now the segment corresponds to the angle and due to the definition of the quadratrix any division of the segment into equal segments yields a corresponding division of the angle into equal angles. To divide the segment into equal segments, draw any ray starting at with equal segments (of arbitrary length) on it. Connect the endpoint of the last segment to and draw lines parallel to through all the endpoints of the remaining segments on . These parallel lines divide the segment into equal segments. Now draw parallel lines to through the endpoints of those segments on , intersecting the trisectrix. Connecting their points of intersection to yields a partition of angle into equal angles.[7]

Since not all points of the trisectrix can be constructed with circle and compass alone, it is really required as an additional tool beyond the compass and straightedge. However it is possible to construct a dense subset of the trisectrix by compass and straightedge. In this way, while one cannot assure an exact division of an angle into parts without a given trisectrix, one can construct an arbitrarily close approximation to the trisectrix and therefore also to the division of the angle by compass and straightedge alone.[3][5]

Squaring the circle

[edit]
Squaring of a quarter circle with radius 1

Squaring the circle with compass and straightedge alone is impossible.[11] However, if one allows the quadratrix of Hippias as an additional construction tool, the squaring of the circle becomes possible due to Dinostratus's theorem relating an endpoint of this circle to the value of π. One can use this theorem to construct a square with the same area as a quarter circle. Another square with twice the side length has the same area as the full circle.

Dinostratus's theorem

[edit]

According to Dinostratus's theorem the quadratrix divides one of the sides of the associated square in a ratio of . More precisely, for the square used to define the curve, let be the endpoint of the curve on edge . Then as can be seen from the parametric equation for the quadratrix at and the limiting behavior of the function controlling its -coordinate at that parameter value, .[2]

The point , where the quadratrix meets the side of the associated square, is one of the points of the quadratrix that cannot be constructed with ruler and compass alone and not even with the help of the quadratrix compass. This is due to the fact that (as Sporus of Nicaea already observed) the two uniformly moving lines coincide and hence there exists no unique intersection point.[12] However relying on the generalized definition of the quadratrix as a function or planar curve allows for being a point on the quadratrix.[13][12]

Construction

[edit]

For a given quarter circle with radius one constructs the associated square with side length . The quadratrix intersect the side in with . Now one constructs a line segment of length being perpendicular to . Then the line through and intersects the extension of the side in and from the intercept theorem follows . Extending to the right by a new line segment yields the rectangle with sides and the area of which matches the area of the quarter circle. This rectangle can be transformed into a square of the same area with the help of Euclid's geometric mean theorem. One extends the side by a line segment and draws a half circle to right of , which has as its diameter. The extension of meets the half circle in and due to Thales' theorem the line segment is the altitude of the right-angled triangle . Hence the geometric mean theorem can be applied, which means that forms the side of a square with the same area as the rectangle and hence as the quarter circle.[14]

Other properties

[edit]

For a quadratrix constructed from a unit square, the area under the quadratrix is[9]

Inverting the quadratrix by a circle centered at the axis of the rotating line that defines it produces a cochleoid, and in the same way inverting the cochleoid produces a quadratrix.[15]

History

[edit]

The quadratrix of Hippias is one of several curves used in Greek mathematics for squaring the circle, the most well-known for this purpose.[1] Another is the Archimedean spiral, used to square the circle by Archimedes.[16]

It is mentioned in the works of Proclus (412–485), Pappus of Alexandria (3rd and 4th centuries) and Iamblichus (c. 240 – c. 325). Proclus names Hippias as the inventor of a curve called a quadratrix and describes somewhere else how Hippias has applied the curve on the trisection problem. Pappus only mentions how a curve named a quadratrix was used by Dinostratus, Nicomedes and others to square the circle. He relays the objections of Sporus of Nicaea to this construction, but neither mentions Hippias nor attributes the invention of the quadratrix to a particular person. Iamblichus just writes in a single line, that a curve called a quadratrix was used by Nicomedes to square the circle.[17][18][19]

From Proclus' name for the curve, it is conceivable that Hippias himself used it for squaring the circle or some other curvilinear figure. However, most historians of mathematics assume that Hippias invented the curve, but used it only for the trisection of angles. According to this theory, its use for squaring the circle only occurred decades later and was due to mathematicians like Dinostratus and Nicomedes. This interpretation of the historical sources goes back to the German mathematician and historian Moritz Cantor.[18][19]

Rüdiger Thiele claims that Fran?ois Viète used the trisectrix to derive Viète's formula, an infinite product of nested radicals published by Viète in 1593 that converges to .[5] However, other sources instead view Viète's formula as an elaboration of a method of nested polygons used by Archimedes to approximate .[20] In his 1637 book La Géométrie, René Descartes classified curves either as "geometric", admitting a precise geometric construction, or if not as "mechanical"; he gave the quadratrix as an example of a mechanical curve. In modern terminology, roughly the same distinction may be expressed by saying that it is a transcendental curve rather than an algebraic curve.[21] Isaac Newton used trigonometric series to determine the area enclosed by the quadratrix.[5]

[edit]
Rolling shutter image of an airplane propeller

When a camera with a rolling shutter takes a photograph of a quickly rotating object, such as a propeller, curves resembling the quadratrix of Hippias may appear, generated in an analogous way to the quadratrix: these curves are traced out by the points of intersection of the rotating propeller blade and the linearly moving scan line of the camera. Different curves may be generated depending on the angle of the propeller at the time when the scan line crosses its axis of rotation (rather than coinciding with the scan line at that time for the quadratrix). A similar visual phenomenon was also observed in the 19th century by Peter Mark Roget when the spoked wheel of a moving cart or train is viewed through the vertical slats of a fence or palisade; it is called Roget’s palisade illusion.[22]

References

[edit]
  1. ^ a b Klein, Felix (1897), Famous Problems of Elementary Geometry, Boston: Ginn, pp. 57–58
  2. ^ a b c Hischer, Horst (2000), "Klassische Probleme der Antike – Beispiele zur "Historischen Verankerung"" (PDF), in Blankenagel, Jürgen; Spiegel, Wolfgang (eds.), Mathematikdidaktik aus Begeisterung für die Mathematik – Festschrift für Harald Scheid, Stuttgart/Düsseldorf/Leipzig: Klett, pp. 97–118, archived from the original (PDF) on 2025-08-14, retrieved 2025-08-14
  3. ^ a b c Henn, Hans-Wolfgang (2003), "Die Quadratur des Kreises", Elementare Geometrie und Algebra, Verlag Vieweg+Teubner, pp. 45–48
  4. ^ Koetsier, Teun (2024), A History of Kinematics from Zeno to Einstein: On the Role of Motion in the Development of Mathematics, History of Mechanism and Machine Science, vol. 46, Springer Nature Switzerland, p. 60, doi:10.1007/978-3-031-39872-8, ISBN 9783031398728
  5. ^ a b c d Jahnke, Hans Niels (2003), A History of Analysis, American Mathematical Society, pp. 30–32, ISBN 0821826239; excerpt, p. 30, at Google Books
  6. ^ Corless, R. M.; Gonnet, G. H.; Hare, D. E. G.; Jeffrey, D. J.; Knuth, D. E. (1996), "On the Lambert W function" (PDF), Advances in Computational Mathematics, 5 (4): 329–359, doi:10.1007/BF02124750, MR 1414285
  7. ^ a b Dudley, Underwood (1994), The Trisectors, Cambridge University Press, pp. 6–8, ISBN 0883855143; excerpt, p. 6, at Google Books
  8. ^ O'Connor, John J.; Robertson, Edmund F., "Quadratrix of Hippias", MacTutor History of Mathematics Archive, University of St Andrews
  9. ^ a b Simoson, Andrew J. (September 2024), "A quadratrix trammel", in Takenouchi, Kazuki (ed.), ICGG 2024 – Proceedings of the 21st International Conference on Geometry and Graphics, Lecture Notes on Data Engineering and Communications Technologies, vol. 218, Springer Nature Switzerland, pp. 268–279, doi:10.1007/978-3-031-71013-1_25, ISBN 9783031710131
  10. ^ Ostermann, Alexander; Wanner, Gerhard (2012), Geometry by Its History, Springer, pp. 6–7, doi:10.1007/978-3-642-29163-0, ISBN 978-3-642-29163-0
  11. ^ Kasner, Edward (July 1933), "Squaring the circle", The Scientific Monthly, 37 (1): 67–71, JSTOR 15685
  12. ^ a b O'Connor, John J.; Robertson, Edmund F., "Dinostratus", MacTutor History of Mathematics Archive, University of St Andrews
  13. ^ Delahaye, Jean-Paul (1999), – Die Story, Springer, p. 71, ISBN 3764360569
  14. ^ Holme, Audun (2010), Geometry: Our Cultural Heritage, Springer, pp. 114–116, ISBN 9783642144400
  15. ^ Eves, Howard (November 1948), "A graphometer", The Mathematics Teacher, 41 (7): 311–313, doi:10.5951/mt.41.7.0311, JSTOR 27953353
  16. ^ Boyer, Carl B. (1968), A History of Mathematics, Princeton, New Jersey: Princeton University Press, pp. 140–142, ISBN 0-691-02391-3
  17. ^ van der Waerden, Bartel Leendert (1961), Science Awakening, Oxford University Press, p. 146
  18. ^ a b Gow, James (2010), A Short History of Greek Mathematics, Cambridge University Press, pp. 162–164, ISBN 9781108009034
  19. ^ a b Heath, Thomas Little (1921), A History of Greek Mathematics, Volume 1: From Thales to Euclid, Clarendon Press, pp. 182, 225–230
  20. ^ Beckmann, Petr (1971), A History of π (2nd ed.), Boulder, Colorado: The Golem Press, pp. 94–95, ISBN 978-0-88029-418-8, MR 0449960
  21. ^ Bos, H. J. M. (1981), "On the representation of curves in Descartes' Géométrie", Archive for History of Exact Sciences, 24 (4): 295–338, doi:10.1007/BF00357312, JSTOR 41133624, MR 0635811
  22. ^ Gregorcic, Bor; Planinsic, Gorazd (September 2012), "Why do photo finish images look weird?", Physics Education, 47 (5): 530–536, doi:10.1088/0031-9120/47/5/530

Further reading

[edit]
[edit]
吃什么补肝最好 沅字的寓意是什么 睡觉做噩梦是什么原因 痔疮有什么症状表现 爱拍马屁的动物是什么生肖
双重所有格是什么意思 脂肪肝喝什么茶最好最有效 疯狂动物城闪电是什么动物 白蛋白是什么意思 什么大河
精子为什么是黄色的 3月26日是什么节日 念珠菌阳性是什么意思 吃榴莲不能吃什么东西 一个木一个寿念什么
胃溃疡是什么症状 炖鸡肉放什么调料 艾灸有什么好处 生闷气是什么意思 玲珑是什么意思
查颈椎挂什么科hcv8jop5ns2r.cn 长期是什么意思beikeqingting.com 什么皮球dayuxmw.com 脸上黑色的小点是什么aiwuzhiyu.com 激素六项挂什么科hcv9jop4ns9r.cn
白蛋白偏低是什么意思hcv9jop0ns1r.cn 抗hp治疗是什么意思hcv7jop7ns3r.cn 66岁属什么hcv9jop6ns1r.cn 豁出去了什么意思zhiyanzhang.com 土猪肉和普通猪肉有什么分别hcv8jop1ns8r.cn
婶婶是什么意思hcv8jop8ns9r.cn 1989是什么生肖hcv9jop0ns2r.cn 小孩体质差吃什么能增强抵抗力aiwuzhiyu.com 血糖高能吃什么hcv9jop6ns5r.cn 兰花指什么生肖hcv9jop2ns5r.cn
什么味道jiuxinfghf.com 血色病是什么病hcv9jop1ns5r.cn 瘴气是什么意思hcv8jop3ns3r.cn 肚脐右边按压疼是什么原因hcv9jop1ns7r.cn 风油精有什么作用hcv7jop7ns2r.cn
百度